Биогаз — что это такое. Общие понятие и применимость. Биогаз: основы производства Что такое биогаз

Вопрос получения метана интересен тем владельцам частных хозяйств, кто занимается разведением птицы или свиней, а также держит крупнорогатый скот. Как правило, в таких хозяйствах вырабатывается значительное количество органических отходов жизнедеятельности животных, они-то и могут принести немалую пользу, став источником дешевого топлива. Цель данного материала – рассказать, как добыть биогаз в домашних условиях, используя эти самые отходы.

Общие сведения о биогазе

Получаемый из различного навоза и птичьего помета домашний биогаз большей частью состоит из метана. Там его от 50 до 80% в зависимости от того, чьи отходы жизнедеятельности использовались для производства. Того самого метана, что горит в наших плитах и котлах, и за который мы платим порой немалые деньги согласно показаниям счетчика.

Чтобы дать представление о количестве горючего, что теоретически можно добыть при содержании животных дома или на даче, представим таблицу с данными о выходе биогаза и содержании в нем чистого метана:

Как можно понять из таблицы, для эффективного производства газа из коровьего навоза и силосных отходов понадобится довольно большое количество сырья. Выгоднее добывать горючее из навоза свиней и помета индюков.

Оставшаяся доля веществ (25-45%), из которых состоит домашний биогаз, приходится на углекислый газ (до 43%) и сероводород (1%). Также в составе горючего присутствует азот, аммиак и кислород, но в незначительных количествах. Кстати, именно благодаря выделению сероводорода и аммиака навозная куча издает такой знакомый «приятный» запах. Что касается энергетического содержания, то 1 м3 метана теоретически может выделить при сжигании до 25 МДж (6.95 кВт) тепловой энергии. Удельная теплота сгорания биогаза зависит от доли метана в его составе.

Для справки. На практике проверено, что для обогрева утепленного дома, находящегося в средней полосе, потребно около 45 м3 биологического горючего на 1 м2 площади за отопительный сезон.

Природой устроено так, что биогаз из навоза образуется самопроизвольно и независимо от того, хотим его получать или нет. Навозная куча перегнивает в течение года – полутора, просто находясь на открытом воздухе и даже при отрицательной температуре. Все это время она выделяет биогаз, но только в небольших количествах, поскольку процесс растянут во времени. Причиной служат сотни видов микроорганизмов, находящихся в экскрементах животных. То есть, для начала газовыделения ничего не нужно, оно будет происходить самостоятельно. А вот для оптимизации процесса и его ускорения потребуется специальное оборудование, о чем пойдет речь далее.

Технология получения биогаза

Суть эффективного производства - ускорение природного процесса разложения органического сырья. Для этого находящимся в нем бактериям необходимо создать наилучшие условия для размножения и переработки отходов. И первое условие – поместить сырье в закрытую емкость – реактор, иначе - генератор биогаза. Отходы измельчаются и перемешиваются в реакторе с расчетным количеством чистой воды до получения исходного субстрата.

Примечание. Чистая вода необходима для того, чтобы в субстрат не попали вещества, пагубно влияющие на жизнедеятельность бактерий. Как следствие, процесс брожения может сильно замедлиться.

Промышленная установка по производству биогаза оборудована подогревом субстрата, средствами перемешивания и контроля над кислотностью среды. Перемешивание выполняется с целью удалить с поверхности твердую корку, что возникает во время брожения и мешает выделению биогаза. Длительность технологического процесса – не менее 15 дней, за это время степень разложения достигает 25%. Считается, что максимальный выход горючего происходит до 33% разложения биомассы.

Технологией предусматривается ежедневное обновление субстрата, так обеспечивается интенсивное получение газа из навоза, в промышленных установках оно исчисляется сотнями кубических метров в день. Часть отработанной массы в размере порядка 5% от общего объема удаляется из реактора, а на ее место загружается столько же свежего биологического сырья. Отработанный материал используется в качестве органического удобрения полей.

Схема биогазовой установки

Получая биогаз в домашних условиях, невозможно создать столь благоприятные условия для микроорганизмов, как в промышленном производстве. И в первую очередь это утверждение касается организации подогрева генератора. Как известно, это требует затрат энергии, что ведет к существенному удорожанию себестоимости горючего. Контролировать соблюдение слабощелочной среды, присущей процессу брожения, вполне возможно. Только как ее корректировать в случае отклонений? Снова затраты.

Владельцам частных хозяйств, желающим добывать биогаз своими руками, рекомендуется изготовить реактор простой конструкции из доступных материалов, а потом его модернизировать в силу своих возможностей. Что надо сделать:

  • герметично закрывающуюся емкость объемом не менее 1 м3. Разные баки и бочки малых размеров тоже подойдут, но горючего из них будет выделяться мало из-за недостаточного количества сырья. Такие объемы производства вас не устроят;
  • организовывая производство биогаза в домашних условиях, вы вряд ли станете делать подогрев емкости, а вот утеплить ее нужно обязательно. Другой вариант – заглубить реактор в землю, выполнив тепловую изоляцию верхней части;
  • установить в реакторе ручную мешалку любой конструкции, выведя рукоятку через верхнюю крышку. Узел прохода ручки должен быть герметичным;
  • предусмотреть патрубки для подачи и выгрузки субстрата, а также для отбора биогаза.

Ниже показана схема биогазовой установки, размещенной ниже уровня земли:

1 – генератор горючего (емкость из металла, пластика или бетона); 2 — бункер для заливки субстрата; 3 – технический люк; 4 – сосуд, играющий роль водяного затвора; 5 – патрубок выгрузки отработанных отходов; 6 – патрубок отбора биогаза.

Как получить биогаз в домашних условиях?

Операция первая – измельчение отходов до фракции, чей размер не более 10 мм. Так гораздо легче приготовить субстрат, да и бактериям будет проще перерабатывать сырье. Получившаяся масса тщательно перемешивается с водой, ее количество – около 0.7 л на 1 кг органики. Как уже сказано выше, воду следует использовать только чистую. Затем субстратом заполняется биогазовая установка, сделанная своими руками, после чего реактор герметично закрывается.

Несколько раз в течении дня надо наведываться к емкости, чтобы перемешать содержимое. На 5-й день можно проверять наличие газа, и буде он появится, периодически откачивать его компрессором в баллон. Если этого вовремя не делать, то давление внутри реактора возрастет и брожение замедлится, а то и остановится вовсе. Спустя 15 дней надо производить выгрузку части субстрата и добавление такого же количество нового. Подробности можно узнать, просмотрев видео:

Заключение

Вполне вероятно, что простейшая установка для получения биогаза не обеспечит все ваши потребности. Но, учитывая нынешнюю стоимость энергоресурсов, это уже будет немалым подспорьем в домашнем хозяйстве, ведь за исходное сырье вам платить не приходится. Со временем, плотно занимаясь производством, вы сможете уловить все особенности и провести необходимое усовершенствование установки.

Биогаз – газ получаемый в результате ферментации (сбраживания) органических веществ (например: соломы; сорняков; животного и человеческого кала; мусора; органических отходов сточных бытовых и промышленных вод, и т.д.) в анаэробных условиях. В производстве биогаза участвуют различные типы микроорганизмов с разнообразным количеством функций катаболизма.

Состав биогаза.

Биогаз более чем на половину состоит из метана (CH 4). Метан составляет примерно 60% биогаза. Кроме того, в биогазе содержится диоксид углерода (CO 2) около 35 %, а также другие газы, такие как водяной пар, сероводород, монооксид углерода, азот и прочие. Биогаз, полученный в различных условиях, различен в своем составе. Так биогаз из человеческих экскрементов, навоза, отходов убоя содержит до 70% метана, а из растительных остатков, как правило, около 55% метана.

Микробиология биогаза.

Биогазовое брожение в зависимости от микробного вида участвующих бактерий можно разделить на три этапа:

Первый называется началом брожения бактерий. Различные органические бактерии, размножаясь, выделяют внеклеточные ферменты, основная роль которых заключается в разрушении сложных органических соединений с гидролизным образованием простых веществ. Например, полисахариды в моносахариды; белок в пептиды или аминокислоты; жиры в глицерин и жирные кислоты.

Второй этап называется водородным. Образуется водород в результате деятельности уксуснокислых бактерий. Их основная роль заключается в бактериальном разложении уксусной кислоты с образованием двуокиси углерода и водорода.

Третий этап называется метаногеным. В нем участвует тип бактерий, известных как метаногены. Их роль состоит в использовании уксусной кислоты, водорода и диоксида углерода с образованием метана.

Классификация и характеристика сырья для ферментации биогаза.

Почти все природные органические материалы могут быть использованы в качестве сырья для ферментации биогаза. Основным сырьем для производства биогаза являются сточные воды: канализации; пищевой, фармацевтической и химической промышленности. В сельских районах это отходы, образующиеся при сборе урожая. Из-за различий в происхождении различен и процесс формирования, химический состав и структура биогаза.

Источники сырья для биогаза в зависимости от происхождения:

1.Сельскохозяйственное сырье.

Это сырье можно разделить на сырье с большим содержание азота и на сырье с большим содержанием углерода.

Сырье с большим содержанием азота:

человеческие фекалии, навоз скота, птичий помет. Соотношение углерод-азот составляет 25:1 или менее. Такое сырое было полностью переварено желудочно-кишечным трактом человека или животного. Как правило, содержит большое количество низкомолекулярных соединений. Вода в таком сырье частично преобразовалась и вошла в состав низкомолекулярных соединений. Это сырье характеризуется легким и быстрым анаэробным разложением на биогаз. А также богатым выходом метана.

Сырье с большим содержанием углерода:

солома и шелуха. Соотношение углерод-азот составляет 40:1. Имеет высокое содержание высокомолекулярных соединений: целлюлозы, гемицеллюлозы, пектина, лигнина, растительных восков. Анаэробного разложения происходит довольно медленно. Для того чтобы увеличить скорость производства газа такие материалы обычно требуют предварительной обработки перед брожением.

2. Городские органические водные отходы.

Включает отходы жизнедеятельности человека, канализацию, органические отходы, органические промышленные сточные воды, осадки в виде шлама.

3. Водные растения.

Включают водяной гиацинт, другие водные растения и водоросли. Расчетная плановая загрузка производственных мощностей характеризуются большой зависимостью от солнечной энергии. Имеют высокую доходность. Технологическая организация требует более аккуратный подход. Анаэробное разложение происходит легко. Метановый цикл короткий. Особенность такого сырья заключается в том, что без предварительной обработки оно всплывает в реакторе. Для того, чтобы это устранить сырье должна быть немного подсушено или предварительно компостировано в течении 2 дней.

Источники сырья для биогаза в зависимости от влажности:

1.Твердое сырье:

солома, органические отходы с относительно высоким содержанием сухого вещества. Их переработка происходит по методу сухой ферментации. Трудности возникают с удалением из ректора большого количества твердых отложений. Общее количество используемого сырья можно представить в виде суммы содержания сухих веществ (TS) и летучих веществ (VS). Летучие вещества можно преобразовать в метан. Для расчета летучих веществ образец сырья загружают в муфельную печь с температурой 530-570°С.

2. Жидкое сырье:

свежие фекалии, навоз, помет. Содержат около 20% сухого вещества. Дополнительно требуют добавления воды в количестве 10% для смешивания с твердым сырьем при сухой ферментации.

3. Органические отходы средней влажности:

барды спиртового производства, сточные воды целлюлозных заводов и др. Такое сырье содержит различное количество белков, жиров и углеводов, является хорошим сырьем для производства биогаза. Для этого сырья используют устройства по типу UASB (Upflow Anaerobic Sludge Blanket - восходящий анаэробный процесс).

Таблица1. Сведения о дебите (скорости образования) биогаза для условий: 1)температура сбраживания 30°С; 2)периодическое сбраживание

Наименование сбраживаемых отходов Средняя скорость потока биогаза во время нормального производства газа (m 3 /m 3 /d) Выход биогаза, m 3 /Kg/TS Дебит биогаза (в % от общего объема производства биогаза)
0-15 d 25-45 d 45-75 d 75-135 d
Сухой навоз 0,20 0,12 11 33,8 20,9 34,3
Вода химической промышленности 0,40 0,16 83 17 0 0
Рогульник (чилим, водяной орех) 0,38 0,20 23 45 32 0
Водяной салат 0,40 0,20 23 62 15 0
Свиной навоз 0,30 0,22 20 31,8 26 22,2
Сухая трава 0,20 0,21 13 11 43 33
Солома 0,35 0,23 9 50 16 25
Человеческие экскременты 0,53 0,31 45 22 27,3 5,7

Расчет процесса метанового брожения (ферментации).

Общие принципы инженерных расчетов ферментации базируются на увеличении загрузки органическим сырьем и сокращении продолжительности метанового цикла.

Расчет сырья на цикл.

Загрузка сырья характеризуется: Массовой долей TS (%), массовой долей VS (%), концентрацией COD (COD - chemical oxygen demand, что в переводе означает ХПК – химический показатель кислорода) (Kg/m 3). Концентрация зависит от типа ферментационных устройств. Например, современные промышленные реакторы для сточных вод - UASB (восходящий анаэробный процесс). Для твердого сырья используют AF (анаэробные фильтры) - обычно концентрация менее 1%. Промышленные отходы в качестве сырья для биогаза чаще всего имеют большую концентрацию и нуждаются в разбавлении.

Расчет скорости загрузки.

Для определения суточного количества загрузки реактора: концентрация COD (Kg/m 3 ·d), TS (Kg/m 3 ·d), VS (Kg/m 3 ·d). Эти показатели являются важным показателями оценки эффективности биогаза. Необходимо стремится к органичению нагрузки и в то же время при этом иметь высокий уровень объема получения газа.

Расчет отношения объема реактора к выходу газа.

Этот показатель является важным показателем оценки эффективности реактора. Измеряется в Kg/m 3 ·d.

Выход биогаза на единицу массы брожения.

Этот показатель характеризует текущее состояние производства биогаза. Например, объем газосборника 3 m 3 . Ежедневно подается 10 Kg/TS. Выход биогаза составляет 3/10 = 0,3 (m 3 /Kg/TS). В зависимости от ситуации можно использовать теоретический выход газа или фактический выход газа.

Теоретический выход биогаза определяется по формулам:

Производство метана (Е):

Е = 0.37A + 0.49B + 1.04C.

Производство углекислого газа (D):

D = 0.37A + 0.49B + 0.36C. Где А- содержание углеводов на грамм материала брожения, B- белка, C- содержание жира

Гидравлический объем.

Для повышения эффективности необходимо снижение срока ферментации. В определенной степени имеется связь с потерей ферментирующих микроорганизмов. В настоящее время некоторые эффективные реакторы имеют срок ферментации 12 дней и даже меньше. Гидравлический объем рассчитывается путем подсчета объема ежедневной загрузки сырья со дня, когда началась загрузка сырья и зависит от срока пребывания в реакторе. Например, планируется ферментация при 35°С, концентрация подачи сырья 8% (общее количество TS), суточный объем подачи 50 m 3 , период ферментации в реакторе 20 дней. Гидравлический объем составит: 50·20 = 100 m 3 .

Удаление органических загрязнений.

Производство биогаза, как и любое биохимическое производство, имеет отходы. Отходы биохимического производства могут наносить ущерб экологии в случаях бесконтрольной утилизации отходов. Например, попадая в реку по соседству. Современные крупные биогазовые установки продуцируют тысячи и даже десятки тысяч килограмм отходов в сутки. Качественный состав и пути утилизации отходов крупных биогазовых установок контролируются лабораториями предприятий и государственной экологической службой. Малые фермерские биогазовые установки не имеют такого контроля по двум причинам: 1) так как мало отходов, то вреда окружающей среде будет мало. 2) Проведение качественного анализа отходов требует специфического лабораторного оборудования и узко специализированного персонала. Этого у мелких фермеров нет, а государственные структуры справедливо считают такой контроль не целесообразным.

Показателем уровня загрязненности отходов биогазовых реакторов является ХПК (химический показатель кислорода).

Используют следующую математическую зависимость: ХПК органической скорости загрузки Kg/m 3 ·d= загрузочная концентрация ХПК (Kg/m 3) / гидравлический срок хранения (d).

Дебит газа в объеме реактора (kg/(m 3 ·d)) = выход биогаза (m 3 /kg) / ХПК органической скорости загрузки kg/(m 3 ·d).

Достоинства биогазовых энергетических установок:

твердые и жидкие отходы имеют специфический запах отпугивающий мух и грызунов;

возможность производить полезный конечный продукт - метан, который является чистым и удобным топливом;

в процессе брожения семена сорняков и некоторые из возбудителей погибают;

в процессе ферментации азот, фосфор, калий и другие ингредиенты удобрения почти полностью сохраняются, часть органического азота преобразуется в аммиачный азот, а это увеличивает его ценность;

ферментационный остаток может быть использован в качестве корма для животных;

для биогазового брожения не требуется применение кислорода из воздуха;

анаэробный шлам может храниться в течение нескольких месяцев без добавления питательных веществ, а затем при загрузке первичного сырья брожение может быстро начаться снова.

Недостатки биогазовых энергетических установок:

сложное устройство и требует относительно больших инвестиций в строительство;

требуется высокий уровень строительства, управления и обслуживания;

первоначальное анаэробное распространение брожения происходит медленно.

Особенности процесса метанового брожения и управление процессом:

1.Температура получения биогаза.

Температура для получения биогаза может быть в относительно широком диапазоне температур 4~65°С. С увеличением температуры скорость получения биогаза возрастает, но не линейно. Температура 40~55°С является переходной зоной жизнедеятельности различных микроорганизмов: термофильных и мезофильных бактерии. Самый высокий темп анаэробного брожения происходит в узком диапазоне температур 50~55°С. При температуре брожения 10°С за 90 дней дебит газа составляет 59%, но этот же дебит при температуре брожения 30°С происходит за 27 дней.

Внезапное изменение температуры будет иметь значительное влияние на производство биогаза. Проектом биогазовой установки обязательно должно предусматриваться контролирование такого параметра как температура. Температурные изменения более чем на 5°С, значительно снижают производительность биогазового реактора. Например, если температура в биогазовом реакторе была продолжительное время 35°С, а затем неожиданно снизилась до 20°С, то производство биогазового реактора почти полностью остановится.

2. Прививочный материал.

Чтобы завершить метановое брожение, как правило, требуется определенное количество и тип микроорганизмов. Богатый метановыми микробами осадок называется прививочный. Биогазовое брожение широко распространено в природе и точно также широко распространены места с прививочным материалом. Это: канализационные шламы, иловые отложения, донные осадки навозных ям, различные осадки сточных вод, пищеварительные остатки и т.д. Из-за обильного органического вещества и хороших анаэробных условий в них образуются богатые микробные сообщества.

Посев, добавленный впервые в новый биогазовый реактор может значительно снизить период стагнации. В новом биогазовом реакторе необходимо вручную вносить подкормку прививочным материалом. При использовании промышленных отходов в качестве сырья этому уделяется особое внимание.

3. Анаэробная среда.

Анаэробность среды определяется степенью анаэробности. Обычно окислительно-восстановительный потенциал принято обозначать величиной Eh. В анаэробных условиях Eh имеет отрицательное значение. Для анаэробных метановых бактерий Eh лежит в пределах -300 ~ -350mV. Некоторые бактерии продуцирующие факультативные кислоты способны жить нормальной жизнью при Eh -100 ~ + 100 мВ.

В целях обеспечения анаэробных условий должно обеспечиваться построение плотно закрытых биогазовых реакторов, обеспечивающих водонепроницаемость и отсутствие утечек. Для крупных промышленных биогазовых реакторов величина Eh всегда контролируется. Для мелких фермерских биогазовых реакторов возникает проблема контроля этой величины из-за необходимости закупки дорогостоящего и сложного оборудования.

4. Контроль кислотности среды (рН) в биогазовом реакторе.

Метаногены необходим диапазон рН в очень узком диапазоне. В среднем рН=7. Брожение происходит в диапазоне рН от 6,8 до 7,5. Контроль за величиной кислотности рН доступен для мелких биогазовых реакторов. Для этого многие фермеры применяют одноразовые лакмусовые индикаторные бумажные полоски. На крупных предприятиях часто используют электронные приборы контроля рН. При нормальных обстоятельствах, баланс метанового брожения носит вид естественного процесса, как правило, без регулировки рН. Только в отдельных случаях бесхозяйственности появляются массовые скопления летучих кислот, снижение рН.

Мерами по смягчению последствий повышенной кислотности рН являются:

(1) Заменить частично среду в биогазовом реакторе, и тем самым разбавить содержание летучих кислот. Этим увеличится рН.

(2) Внести золу или аммиак для повышения рН.

(3) Довести рН известью. Эта мера особенно эффективна для случаев сверхвысоких содержаний кислоты.

5. Перемешивание среды в биогазовом реакторе.

В обычном бродильном чане в результате брожения среда обычно делится на четыре слоя: верхняя корка, надосадочный слой, активный слой и слой осадка.

Цель перемешивания:

1) переселение активных бактерий на новую порцию первичного сырья, увеличение поверхности контакта микробов и сырья для ускорения темпов получения биогаза, повышение эффективности использования сырья.

2) избежание образования толстого слоя корки, создающего сопротивление для выхода биогаза. К перемешиванию особенно требовательно такое сырьё как: солома, сорняки, листья и т.д. В толстом слое корки создаются условия для накопления кислоты, что является не допустимым.

Способы перемешивания:

1) механическое перемешивание колесами различного типа, установленными внутри рабочего пространства биогазового реактора.

2) перемешивание биогазом, отбираемым из верхней части биореактора и подающимся в нижнюю часть с избыточным давлением.

3) перемешивание циркулирующим гидравлическим насосом.

6. Соотношение углерода к азоту.

Эффективному брожению способствует только оптимальное соотношение питательных веществ. Основным показателем является соотношение углерода к азоту (C: N). Оптимальное соотношение 25:1. Многочисленными исследованиями доказано, что пределы оптимального соотношения составляют 20-30:1, а производство биогаза значительно снижается при соотношении 35:1. Экспериментальными исследованиями выявлено, что биогазовое брожение возможно при соотношении углерода к азоту 6:1.

7. Давление.

Метановые бактерии могут приспосабливаться к большим гидростатическим давлениям (около 40 метров и более). Но они очень чувствительны к изменениям давления и из-за этого возникает необходимость в стабильном давлении (отсутствии резких перепадов давления). Значительные изменения давления могут происходить в случаях: значительного возрастания потребления биогаза, относительно быстрой и большой загрузки биореактора первичным сырьём или аналогичной разгрузки реактора от отложений (чистке).

Способы стабилизации давления:

2) подачу свежего первичного сырья и чистку производить одновременно и с одинаковой скоростью разрядки;

3) установка плавающих крышек на биогазовый реактор позволяет сохранять относительно стабильное давление.

8. Активаторы и ингибиторы.

Некоторые вещества после добавления небольшого количества улучшают производительность биогазового реактора, такие вещества, известные как активаторы. В то время как другие вещества добавленые в небольших количествах приводят к значительному сдерживанию процессов в биогазовом реакторе, такие вещества, называют ингибиторами.

Известны многие типы активаторов, в том числе некоторые ферменты, неорганические соли, органические и неорганические вещества. Например, добавление определенного количества фермента целлюлазы значительно облегчает производство биогаза. Добавка 5 mg/Kg высших оксидов (R 2 О 5) может увеличить добычу газа на 17%. Дебит биогаза для первичного сырья из соломы и подобных ей можно значительно увеличить добавкой аммония гидрокарбоната (NH 4 HCO 3). Активаторами также являются активированный уголь или торф. Подача в биореактор водорода может резко увеличить производство метана.

Ингибиторы в основном относится к некоторым из соединений ионов металлов, солей, фунгицидов.

Классификация процессов брожения.

Метановая ферментация является строго анаэробной ферментацией. Процессы брожения делятся на следующие типы:

Классификация по температуре брожения.

Может быть разделена на "естественную" температуры брожения (ферментации переменной температуры), в этом случае температура брожения около 35°С и процесс с высокой температурой брожения (около 53°С).

Классификация по дифференциальности.

По дифференциальности ферментации можно разделить на одноступенчатое брожение, двухступенчатое брожение и многоступенчатое брожение.

1) Одноступенчатое брожение.

Относится к наиболее общему типу брожения. Это относится к аппаратам, в которых одновременно происходит продуцирование кислот и метана. Одноступенчатое брожения может быть менее эффективно по показателю БПК (Биологическому Потреблению Кислорода) чем двух- и многоступенчатое брожение.

2) Двухступенчатое брожение.

Основано на отдельном брожении кислот и метаногенных микроорганизмов. Эти два типа микробов имеют разную физиологию и потребность в питании, существуют значительные различия в росте, обменных характеристиках и других аспектах. Двухэтапное брожения может значительно повысить дебит биогаза и разложение летучих жирных кислот, сократить цикл ферментации, принести значительную экономию эксплуатационных расходов, эффективно удалить органические загрязнения из отходов.

3) Многоступенчатое брожение.

Применяется для первичного сырья богатого целлюлозой в следующей последовательности:

(1) Производят гидролиз целлюлозного материала в присутствии кислот и щелочей. Происходит образование глюкозы.

(2) Вносят прививочный материал. Обычно это активный осадок или сточные воды биогазового реактора.

(3) Создают подходящие условия для продуцирования кислотных бактерий (продуцирующих летучие кислоты): pH=5,7 (но не более 6,0), Eh=-240mV, температура 22°С. На этой стадии образуются такие летучие кислоты: уксусная, пропионовая, масляная, изомасляная.

(4) Создают подходящие условия для продуцирования метановых бактерий: pH=7,4-7,5, Eh=-330mV, температура 36-37°С

Классификация по переодичности.

Технология брожение классифицируется на переодическое брожение, непрерывное брожение, полунепрерывное брожение.

1) Периодическое брожение.

В биогазовый реактор едино разово загружают сырье и прививочный материал и подвергают его брожению. Такой способ применяют когда имеются трудности и неудобства загрузки первичного сырья, а также выгрузки отходов. Например, не измельченная солома или крупногабаритные брикеты органических отходов.

2) Непрерывное брожение.

К нему относятся случаи, когда планово несколько раз в день в биоректор загружают сырье и удаляют ферментационные стоки.

3) Полунепрерывное брожение.

Это относится к биогазовым реакторам, для которых нормальным считается время от времени не равными количествами добавлять различное первичное сырье. Такая технологическая схема наиболее часто используется мелкими фермерскими хозяйствами Китая и связана с особенностями ведения сельхоз. работ. Биогазовые реакторы полунепрерывного брожения могут иметь различные отличия в конструкциях. Ниже рассмотрены эти конструкции.

Схема №1. Биогазовый реактор с неподвижной крышкой.

Особенности конструкции: комбинирование бродильной камеры и хранилища биогаза в одном сооружении: в нижней части бродит сырье; в верхней части храниться биогаз.

Принцип действия:

Биогаз выходит из жидкости и собирается под крышкой биогазового реактора в его куполе. Давление биогаза уравновешивается весом жидкости. Чем больше давление газа, тем больше жидкости покидает бродильную камеру. Чем меньше давление газа, тем больше жидкости поступает в бродильную камеру. В процессе работы биогазового реактора внутри него всегда есть жидкость и газ. Но в разных соотношениях.

Схема№2. Биогазовый реактор с плавающей крышкой.

Схема№3. Биогазовый реактор с неподвижной крышкой и внешним газгольдером.

Особенности конструкции: 1) взамен плавающей крышки имеет отдельно построенный газгольдер; 2) давление биогаза на выходе постоянно.

Достоинства Схемы №3: 1) идеально подходит для работы биогазовых горелок, строго требующих определенный номинал давления; 2) при малой активности брожения в биогазовом реакторе есть возможность обеспечить стабильное и высокое давление биогаза у потребителя.

Руководство по строительству бытового биогазового реактора.

GB/T 4750-2002 Бытовые биогазовые реакторы.

GB/T 4751-2002 Приемка по качеству бытовых биогазовых реакторов.

GB/T 4752-2002 Правила строительства бытовых биогазовых реакторов.

GB 175 -1999 Портландцемент, портландцемент обыкновенный.

GB 134-1999 Шлакопортландцемент, цемент из вулканического туфа и цемент из зольной пыли.

GB 50203-1998 Строительство каменной кладки и приемка.

JGJ52-1992 Стандарт качества обыкновенного бетона из песка. Методы испытаний.

JGJ53- 1992 Стандарт качества обыкновенного бетона из щебня или гравия. Методы испытаний.

JGJ81 -1985 Механические характеристики обыкновенного бетона. Метод испытаний.

JGJ/T 23-1992 Техническая спецификация для испытания прочности бетона на сжатие методом отскока.

JGJ70 -90 Строительный раствор. Метод испытания на основные характеристики.

GB 5101-1998 Кирпичи.

GB 50164-92 Контроль качества бетона.

Воздухонепроницаемость.

Конструкция биогазового реактора обеспечивает внутреннее давление 8000 (или 4000 Pa). Степень утечки после 24 ч менее 3%.

Единица производства биогаза на объем реактора.

Для удовлетворительных условий производства биогаза считается нормальным, когда на кубический метр объема реактора производится 0,20-0,40 m 3 биогаза.

Нормальный объем газового хранилища составляет 50% суточного производства биогаза.

Коэффициент запаса прочности не менее K=2,65.

Нормальный срок эксплуатации не менее 20 лет.

Живая нагрузка 2 kN/m 2 .

Значение несущей способности конструкции фундамента не менее 50 kPa.

Газовые резервуары рассчитаны на давление не более 8000 Pa, а с плавающей крышкой на давление не более 4000 Pa.

Максимальный предел давления для бассейна не более 12000 Pa.

Минимальная толщина арочного свода реактора не менее 250 mm.

Максимальная загрузка реактора составляет 90% его объема.

Конструкцией реактора предусматривается наличие под крышкой реактора места для флотации газа составляющее 50% суточного производства биогаза.

Объем реактора составляет 6 m 3 , дебит газа 0,20 m 3 /m 3 /d.

Возможна постройка реакторов с объемом 4 m 3 , 8 m 3 , 10 m 3 по этим чертежам. Для этого необходимо использовать поправочные размерные величины, указанные в таблице на чертежах.

Подготовка к строительству биогазового реактора.

Выбор типа биогазового реактора зависит от количества и характеристик сбраживаемого сырья. Кроме того выбор зависит от местных гидрогеологических и климатических условий и уровня строительной техники.

Бытовой биогазовый реактор должен располагаться вблизи туалетов и помещений со скотом на удалении не более 25 метров. Место расположения биогазового реактора должно быть с подветренной и солнечной стороны на твердом грунте с низким уровнем подземных вод.

Для выбора дизайна биогазового реактора используйте таблицы расхода строительных материалов приведенные ниже.

Таблица3. Шкала материалов для биогазового реактора из сборных бетонных панелей

Объем реактора, m 3
4 6 8 10
Объем, m 3 1,828 2,148 2,508 2,956
Цемент, kg 523 614 717 845
Песок, m 3 0,725 0,852 0,995 1,172
Гравий, m 3 1,579 1,856 2,167 2,553
Объем, m 3 0,393 0,489 0,551 0,658
Цемент, kg 158 197 222 265
Песок, m 3 0,371 0,461 0,519 0,620
Цементная паста Цемент, kg 78 93 103 120
Общее количество материала Цемент, kg 759 904 1042 1230
Песок, m 3 1,096 1,313 1,514 1,792
Гравий, m 3 1,579 1,856 2,167 2,553

Таблица4. Шкала материалов для биогазового реактора из сборных железобетонных панелей

Объем реактора, m 3
4 6 8 10
Объем, m 3 1,540 1,840 2,104 2,384
Цемент, kg 471 561 691 789
Песок, m 3 0,863 0,990 1,120 1,260
Гравий, m 3 1,413 1,690 1,900 2,170
Оштукатуривание сборного корпуса Объем, m 3 0,393 0,489 0,551 0,658
Цемент, kg 158 197 222 265
Песок, m 3 0,371 0,461 0,519 0,620
Цементная паста Цемент, kg 78 93 103 120
Общее количество материала Цемент, kg 707 851 1016 1174
Песок, m 3 1,234 1,451 1,639 1,880
Гравий, m 3 1,413 1,690 1,900 2,170
Стальные материалы Стальной прут диаметр 12 mm, kg 14 18,98 20,98 23,00
Стальная арматура диаметр 6,5 mm, kg 10 13,55 14,00 15,00

Таблица5. Шкала материалов для биогазового реактора из монолитного бетона

Объем реактора, m 3
4 6 8 10
Объем, m 3 1,257 1,635 2,017 2,239
Цемент, kg 350 455 561 623
Песок, m 3 0,622 0,809 0,997 1,107
Гравий, m 3 0,959 1,250 1,510 1,710
Оштукатуривание сборного корпуса Объем, m 3 0,277 0,347 0,400 0,508
Цемент, kg 113 142 163 208
Песок, m 3 0,259 0,324 0,374 0,475
Цементная паста Цемент, kg 6 7 9 11
Общее количество материала Цемент, kg 469 604 733 842
Песок, m 3 0,881 1,133 1,371 1,582
Гравий, m 3 0,959 1,250 1,540 1,710

Таблица6. Условные обозначения на чертежах.

Описание Обозначение на чертежах
Материалы:
Штруба (траншея в грунте)
Символы:
Ссылка на чертеж детали. Верхняя цифра указывает на номер детали. Нижняя цифра указывает на номер чертежа с подробным описанием детали. Если вместо нижней цифры указан знак «-», то это указывает, что подробное описание детали представлено на этом чертеже.
Разрез детали. Жирными линиями указана плоскость разреза и направление взгляда, а цифрами указан идентификационный номер разреза.
Стрелкой указан радиус. Цифры после буквы R обозначают значение радиуса.
Общепринятые:
Соответственно большая полуось и короткая ось эллипсоида
Длина

Конструкции биогазовых реакторов.

Особенности:

Тип конструктивной особенности основного бассейна.

Дно имеет уклон от впускного окна к выпускному окну. Это обеспечивает образование постоянство движущегося потока. На чертежах №№ 1-9 указаны три типа конструкций биогазового реактора: тип А, тип В, тип С.

Биогазовый реактор тип А: Устроен наиболее просто. Удаление жидкой субстанции предусматривается только через выпускное окно силой давления биогаза внутри бродильной камеры.

Биогазовый реактор тип В: Основной бассейн оснащен вертикальной трубой в центре, через которую в процессе эксплуатации можно производить подачу или удаление жидкой субстанции в зависимости от такой необходимости. Кроме этого для формирования потока субстанции через вертикальную трубу этот тип биогазового реактора имеет отражающую (дефлекторную) перегородку на дне основного бассейна.

Биогазовый реактор тип С: Имеет сходную конструкцию с реактором типа В. Однако, оснащен ручным поршневым насосом простой конструкции, установленным в центральной вертикальной трубе, а также другие отражающие перегородки на дне основного бассейна. Эти конструктивные особенности позволяют эффективно контролировать параметры основных технологических процессов в основном бассейне за счет простоты экспресс проб. А также использовать биогазовый реактор в качестве донора биогазовых бактерий. В реакторе этого типа более полно происходит диффузия (перемешивание) субстрата, что в свою очередь увеличивает выход биогаза.

Характеристики сбраживания:

Процесс заключается в отборе прививочного материала; подготовке первичного сырья (доводки по плотности водой, доводки кислотности, внесении прививочного материала); сбраживании (контроль смешивания субстрата и температуры).

В качестве ферментационного материала используются человеческие фекалии, навоз домашнего скота, птичий помет. При непрерывном процессе сбраживания создаются относительно стабильные условия эффективной работы биогазового реактора.

Принципы проектирования.

Соответствие «триединой» системе (биогаз, туалет, хлев). Биогазовый реактор представляет собой вертикальный цилиндрический резервуар. Высота цилиндрической части H=1 m. Верхняя часть резервуара имеет арочный свод. Соотношение высоты свода к диаметру цилиндрической части f 1 /D=1/5. Дно имеет наклон от впускного окна к выпускному окну. Угол наклона 5 градусов.

Конструкция резервуара обеспечивает удовлетворительные условия брожения. Движение субстрата происходит самотеком. Система работает при полной загрузке резервуара и сама себя контролирует по времени пребывания сырья за счет увеличения производства биогаза. Биогазовые реакторы типов В и С имеют дополнительные устройства для обработки субстрата.
Загрузка резервуара сырьем может быть не полной. Это снижает газовую производительность без ущерба эффективности.
Низкая стоимость, простота управления, широкое народное распространение.

Описание строительных материалов.

Материал стен, дна, свода биогазового реактора – бетон.

Детали квадратного сечения, такие как загрузочный канал, могут быть сделаны из кирпича. Бетонные конструкции могут быть выполнены заливкой бетонной смеси, но могут быть выполнены из сборных бетонных элементов (такие как: крышка впускного окна, садок для бактерий, труба по центру). Садок для бактерий круглый в сечении и состоит из битой яичной скорлупы, помещенной в оплетку.

Последовательность строительных операций.

Метод опалубочной заливки заключается в следующем. На земле делается разметка контура будущего биогазового реактора. Извлекается грунт. Сначала заливается дно. На дно устанавливается опалубка для заливки бетона по кольцу. Заливаются стенки с применением опалубки и затем арочный свод. Для опалубки может быть использована сталь, дерево или кирпич. Заливку производят симметрично и для прочности применяют трамбовочные устройства. Излишки текучего бетона убирают шпателем.

Строительные чертежи.

Строительство производится по чертежам №№1-9.

Чертеж 1. Биогазовый реактор 6 m 3 . Тип А:

Чертеж 2. Биогазовый реактор 6 m 3 . Тип А:

Строительство биогазовых реакторов из сборных железобетонных плит является более совершенной технологией строительства. Эта технология более совершенна за счет простоты реализации соблюдения точности размеров, снижения сроков и затрат на строительство. Главной особенностью строительства является то, что основные элементы реактора (арочный свод, стены, каналы, крышки) изготавливаются вдали от места установки, затем они транспортируются на место установки и собираются на месте в большом котловане. При сборке такого реактора основное внимание уделяется соответствие точности установки по горизонтали и вертикали, а также плотности стыковых соединений.

Чертеж 13. Биогазовый реактор 6 m 3 . Детали биогазового реактора из железобетонных плит:

Чертеж 14. Биогазовый реактор 6 m 3 . Элементы сборки биогазового реактора:

Чертеж 15. Биогазовый реактор 6 m 3 . Элементы сборки железобетонного реактора:

Рост цен на энергоносители заставляет задуматься о возможности обеспечить себя ими самостоятельно. Один из вариантов — биогазовая установка. С ее помощью из навоза, помета и растительных остатков получают биогаз, который после очистки можно использовать для газовых приборов (плиты, котла), закачивать в баллоны и использовать его как топливо для автомобилей или электрогенераторов. В общем — переработка навоза в биогаз может обеспечить все потребности дома или фермы в энергоносителях.

Постройка биогазовой установки — способ самостоятельного обеспечения энергоресурсами

Общие принципы

Биогаз — продукт, который получается при разложении органических веществ. В процессе гниения/брожения выделяются газы, собрав которые, можно обеспечить нужды собственного хозяйства. Оборудование, в котором происходит данный процесс называю «биогазовая установка».

Процесс образования биогаза происходит за счет жизнедеятельности разного рода бактерий, которые содержатся в самих отходах. Но для того чтобы они активно «работали» необходимо им создать определенные условия: влажность и температуру. Для их создания строятся биогазовая установка. Это комплекс устройств, основа которого — биореактор, в котором и происходит разложение отходов, который сопровождается газообразованием.

Различают три режима переработки навоза в биогаз:

  • Психофильный режим. Температура в биогазовой установке от +5°C до +20°C. При таких условиях процесс разложения идет медленно,газа образуется намного, его качество низкое.
  • Мезофильный. На этот режим установка выходит при температуре от +30°C до +40°C. В этом случае активно размножаются мезофильные бактерии. Газа при этом образуется больше, процесс переработки занимает меньше времени — от 10 до 20 дней.
  • Термофильный. Эти бактерии размножаются при температуре от +50°C. Процесс идет быстрее всего (3-5 дней), выход газа — самый большой (при идеальных условиях с 1 кг завоза можно получить до 4,5 литров газа). Большинство справочных таблиц по выходу газа от переработки даны именно для этого режима, так что при использовании других режимов стоит делать корректировку в меньшую сторону.

Сложнее всего в биогазовых установках реализуется термофильный режим. Тут требуется качественная теплоизоляция биогазовой установки, подогрев и система контроля за температурой. Зато на выходе получаем максимальное количество биогаза. Еще одна особенность термофильной переработки — невозможность дозагрузки. Остальные два режима — психофильный и мезофильный — позволяют ежедневно добавлять свежую порцию подготовленного сырья. Но, при термофильном режиме, малый срок переработки позволяет разделить биореактор на зоны, в которых будет перерабатываться своя доля сырья с разными сроками загрузки.

Схема биогазовой установки

Основа биогазовой установки — биореактор или бункер. В нем происходит процесс брожения, в нем же скапливается полученный газ. Также есть бункер загрузки и выгрузки, выработанный газ выводится через вставленную в верхнюю часть трубу. Далее идет система доработки газа — ее очистка и повышение давления в газопроводе до рабочего.

Для мезофильных и термофильных режимов необходима также система подогрева биореактора — для выхода на требуемые режимы. Для этого обычно используются газовые котлы, работающие на произведенном топливе. От него система трубопроводов идет в биореактор. Обычно это полимерные трубы, так как они лучше всего переносят нахождение в агрессивной среде.

Еще биогазовая установка нуждается в системе для перемешивания субстанции. При брожении вверху образуется твердая корка, тяжелые частицы оседают вниз. Все это вместе ухудшает процесс газообразования. Для поддержания однородного состояния перерабатываемой массы и необходимы мешалки. Они могут быть механическими и даже ручными. Могут запускаться по таймеру или вручную. Все зависит от того, как сделана биогазовая установка. Автоматизированная система более дорога при монтаже, но требует минимума внимания при эксплуатации.

Биогазовая установка по типу расположения может быть:

  • Надземной.
  • Полузаглубленной.
  • Заглубленной.

Более затратны в установке заглубленные — требуется большой объем земельных работ. Но при эксплуатации в наших условиях они лучше — проще организовать утепление, меньше расходы на подогрев.

Что можно перерабатывать

Биогазовая установка по сути всеядна — перерабатываться может любая органика. Подходит любой навоз и моча, растительные остатки. Негативно влияют на процесс моющие вещества, антибиотики, химия. Их поступление желательно минимизировать, так как они убивают флору, которая занимается переработкой.

Идеальным считается навоз КРС, так как в нем содержатся микроорганизмы в большом количестве. Если в хозяйстве нет коров, при загрузке биореактора желательно добавить некоторую часть помета, для заселения субстрата требуемой микрофлорой. Растительные остатки предварительно измельчаются, разводятся с водой. В биореакторе смешиваются растительное сырье и экскременты. Такая «заправка» перерабатывается дольше, но на выходе при правильном режиме, имеем наибольший выход продукта.

Определение местоположения

Чтобы минимизировать затраты на организацию процесса, имеет смысл расположить биогазовую установку неподалеку от источника отходов — возле построек, где содержится птица или животные. Разработать конструкцию желательно так, чтобы загрузка происходила самотеком. Из коровника или свинарника можно проложить под уклоном трубопровод, по которому навоз будет самотеком поступать в бункер. Это существенно облегчает задачу по обслуживанию реактора, да и уборку навоза тоже.

Наиболее целесообразно расположить биогазовую установку так, чтобы отходы с фермы могли поступать самотеком

Обычно строения с животными находятся на некотором отдалении от жилого дома. Потому выработанный газ нужно будет передавать к потребителям. Но протянуть одну газовую трубу дешевле и проще, чем организовывать линию по транспортировке и загрузке навоза.

Биореактор

К емкости для переработки навоза предъявляются довольно жесткие требования:


Все эти требования по строительству биогазовой установки должны выполняться, так как они обеспечивают безопасность и создают нормальные условия для переработки навоза в биогаз.

Из каких материалов можно сделать

Стойкость к агрессивных средам — это основное требование к материалам, из которых можно сделать емкость. Субстрат в биореакторе может иметь кислую или щелочную реакцию. Соответственно материал, из которого изготавливают емкость, должен хорошо переносить различные среды.

Этим запросам отвечают не так много материалов. Первое что приходит на ум — металл. Он прочен, из него можно сделать емкость любой формы. Что хорошо, что использовать можно готовую емкость — какую-то старую цистерну. В этом случае строительство биогазовой установки займет совсем немного времени. Недостаток металла — он вступает в реакцию с химически активными веществами и начинает разрушаться. Для нейтрализации данного минуса металл покрывается защитным покрытием.

Отличный вариант — емкость биореактора из полимера. Пластик химически нейтрален, не гниет, не ржавеет. Только надо выбирать из таких материалов, которые выносят заморозку и нагрев до достаточно высоких температур. Стенки реактора должны быть толстыми, желательно армированными стекловолокном. Такие емкости недешевы, зато они служат долго.

Более дешевый вариант — биогазовая установка с емкостью из кирпича, бетонных блоков, камня. Для того чтобы кладка выдерживала высокие нагрузки, необходимо армирование кладки (в каждом 3-5 ряду в зависимости от толщины стены и материала). После завершения процесса возведения стен для обеспечения водо- и газо- непроницаемости необходима последующая многослойная обработка стен как изнутри, так и снаружи. Стены штукатурят цементно-песчаным составом с добавками (присадками), обеспечивающими требуемые свойства.

Определение размеров реактора

Объем реактора зависит от выбранной температуры переработки навоза в биогаз. Чаще всего выбирается мезофильная — ее легче поддерживать и она предполагает возможность ежедневной дозагрузки реактора. Выработка биогаза после выхода на нормальный режим (порядка 2 дней) идет стабильно, без всплесков и провалов (при создании нормальных условий). В этом случае имеет смысл рассчитать объем биогазовой установки в зависимости от количества навоза, образующегося в хозяйстве за сутки. Все легко подсчитывается, исходя из среднестатистических данных.

Разложение навоза при мезофильных температурах идет от 10 до 20 дней. Соответственно, объем рассчитывается умножением на 10 или 20. При расчете необходимо учитывать количество воды, которое необходимо для приведения субстрата к идеальному состоянию — его влажность должна быть 85-90%. Найденный объем увеличивают на 50%, так как максимальная загрузка не должна превышать 2/3 по объему резервуара — под потолком должен скапливаться газ.

Например, в хозяйстве 5 коров, 10 свиней и 40 кур. За сути образуется 5 * 55 кг + 10 * 4,5 кг + 40 * 0,17 кг = 275 кг + 45 кг + 6,8 кг = 326,8 кг. Чтобы привести куриный помет к влажности 85% необходимо добавить чуть больше 5 литров воды (это еще 5 кг). Итого общая масса получается 331,8 кг. Для переработки за 20 дней необходимо: 331,8 кг * 20 = 6636 кг — около 7 кубов только под субстрат. Найденную цифру умножаем на 1,5 (увеличиваем на 50%), получаем 10,5 куб. Это и будет расчетная величина объема реактора биогазовой установки.

Люки загрузки и разгрузки ведут непосредственно в емкость биореактора. Для того чтобы субстрат равномерно распределялся по всей площади, делают их в противоположных концах емкости.

При заглубленном способе установки биогазовой установки, загрузочные и разгрузочные трубы подходят к корпусу под острым углом. Причем нижний конец трубы должен находится ниже уровня жидкости в реакторе. Таким образом исключается попадание воздуха в емкость. Также на трубах ставят поворотные или отсечные задвижки, которые в нормальном положении закрыты. Открываются они только на время загрузки или выгрузки.

Так как в навозе могут содержаться крупные фрагменты (элементы подстилки, стебли травы и т.д.), трубы малого диаметра будут часто забиваться. Потому для загрузки-выгрузки они должны быть диаметром 20-30 см. Монтировать их необходимо до начала работ по утеплению биогазовой установки, но после того, как емкость установлена на место.

Наиболее удобный режим работы биогазовой установки — с регулярной загрузкой и выгрузкой субстрата. Данная операция может проводится раз в сутки или раз в двое суток. Навоз и другие компоненты предварительно собираются в накопительной емкости, где доводятся до требуемого состояний — измельчаются, при необходимости увлажняются и перемешиваются. Для удобства в данной емкости может быть механическая мешалка. Подготовленный субстрат выливается в приемный люк. Если расположить приемную емкость на солнце, субстрат будет предварительно нагреваться, что уменьшит затраты на поддержание требуемой температуры.

Глубину установки приемного бункера желательно рассчитать так, чтобы отходы стекали в него самотеком. То же касается выгрузки в биореактор. Лучший случай, если подготовленный субстрат будет двигаться самотеком. А отгораживать его на время подготовки будет заслонка.

Для обеспечения герметичности биогазовой установки, люки на приемном бункере и в зоне выгрузки должны иметь герметизирующий резиновый уплотнитель. Чем меньше будет в емкости воздуха, тем чище будет газ на выходе.

Сбор и отвод биогаза

Отведение биогаза из реактора происходит через трубу, один конец которой находится под крышей, второй обычно опущен в гидрозатвор. Это емкость с водой, в которую выводится полученный биогаз. В гидрозатворе есть вторая труба — она находится выше уровня жидкости. В нее выходит уже более чистый биогаз. На выходе их биореактора устанавливается отсечной газовый кран. Лучший вариант — шаровый.

Какие материалы можно использовать для системы передачи газа? Гальванизированные металлические трубы и газовые трубы из ПНД или ППР. Они должны обеспечивать герметичность, швы и стыки проверяются при помощи мыльной пены. Весь трубопровод собирается из труб и арматуры одного диаметра. Без сужений и расширений.

Очищение от примесей

Примерный состав получаемого биогаза такой:

  • метан — до 60%;
  • углекислый газ — 35%;
  • другие газообразные вещества (в том числе и сероводород, придающий газу неприятный запах) — 5%.

Для того чтобы биогаз не имел запаха и хорошо горел, необходимо удалить из него углекислый газ, сероводород, пары воды. Удаление углекислого газа происходит в гидрозатворе, если на дно установки добавить гашеную известь. Такую закладку придется периодически менять (как станет газ гореть хуже — пора менять).

Осушение газа можно сделать двумя способами — сделав в газопроводе гидрозатворы — вставив в трубу изогнутые участки под гидрозатворы, в которых будет скапливаться конденсат. Недостаток такого способа — необходимость регулярного опорожнения гидрозатвора — при большом количестве собранной воды она может заблокировать проход газа.

Второй способ — поставить фильтр с силикагелем. Принцип тот же, что и в гидрозатворе — газ подается в силикагель, отводится осушенный из-под крышки. При таком способе осушения биогаза, силикагель приходится периодически осушать. Для этого его требуется прогреть некоторое время в микроволновке. Он нагревается, влага испаряется. Можно засыпать и снова использовать.

Для удаления сероводорода используется фильтр с загрузкой из металлической стружки. Можно в емкость загрузить старые металлические мочалки. Очищение происходит точно также: газ подается в нижнюю часть заполненной металлом емкости. Проходя, он очищается от сероводорода, собирается в верхней свободной части фильтра, откуда выводится по через другую трубу/шланг.

Газгольдер и компрессор

Прошедший очистку биогаз поступает в емкость для хранения — газгольдер. Это может быть герметичный полиэтиленовый мешок, пластиковая емкость. Основное условие — газонепроницаемость, форма и материал не имеют значения. В газгольдере хранится запас биогаза. Из него, при помощи компрессора, газ под определенным давлением (задается компрессором) поступает уже к потребителю — на газовую плиту или котел. Этот газ также может использоваться для выработки электроэнергии при помощи генератора.

Для создания стабильного давления в системе после компрессора желательно установить ресивер — небольшое устройство для нивелирования скачков давления.

Устройства для перемешивания

Чтобы биогазовая установка работала в нормальном режиме, необходимо регулярное перемешивание жидкости в биореакторе. Этот несложный процесс решает множество задач:

  • перемешивает свежую порцию загрузки с колонией бактерий;
  • способствует высвобождению выработанного газа;
  • выравнивает температуру жидкости, исключая более прогретые и более холодные участки;
  • поддерживает однородность субстрата, предотвращая оседание или всплытие некоторых составляющих.

Обычно небольшая самодельная биогазовая установка имеет механические мешалки, которые приводятся в движение при помощи мускульной силы. В системах с большим объемом приводить в движение мешалки могут моторы, которые включаются таймером.

Второй способ — перемешивать жидкость, пропуская через нее част выработанного газа. Для этого после выхода из метатенка ставится тройник и часть газа полается в нижнюю часть реактора, где через трубку с дырками выходит. Эту часть газа нельзя считать расходом, так как он все равно снова попадает в систему и, в результате, оказывается в газгольдере.

Третий способ перемешивания — при помощи фекальных насосов перекачивать субстрат их нижней части, выливать его вверху. Недостаток этого способа — зависимость от наличия электроэнергии.

Система подогрева и теплоизоляция

Без подогрева перерабатываемой жижи размножаться будут психофильные бактерии. Процесс переработки в этом случае займет от 30 дней, а выход газа будет небольшим. Летом, при наличии теплоизоляции и предварительном подогреве загрузки возможен выход на температуры до 40 градусов, когда начинается развитие мезофильных бактерий, но зимой такая установка практически неработоспособна — процессы протекают очень вяло. При температуре ниже +5°C они практически замирают.

Чем греть и где расположить

Для получения лучших результатов используют подогрев. Наиболее рациональный — водяной подогрев от котла. Работать котел может на электричестве, твердом или жидком топливе, также можно запустить его на вырабатываемом биогазе. Максимальная температура, до которой требуется греть воду — +60°C. Более горячие трубы могут вызвать налипание на поверхность частиц, что приведет к снижению эффективности обогрева.

Можно использовать и прямой подогрев — вставить ТЭНы, но во-первых, сложно организовать перемешивание, во-вторых, на поверхности будет налипать субстрат, снижая теплоотдачу, ТЭНы будут быстро перегорать

Обогреваться биогазовая установка может с использованием стандартных радиаторов отопления, просто трубами, закрученными в змеевик, сварными регистрами. Трубы использовать лучше полимерные — металлопластиковые или полипропиленовые. Подходят также трубы из гофрированной нержавейки, их проще укладывать, особенно в цилиндрических вертикальных биореакторах, но гофрированная поверхность провоцирует налипание осадка, что не очень хорошо для теплоотдачи.

Чтобы снизить возможность осаждения частиц на греющих элементах, их располагают в зоне мешалки. Только при этом надо все спроектировать так, чтобы мешалка не могла задеть трубы. Часто кажется, что лучше нагреватели расположить снизу, но практика показала, что из-за осадка на дне такой обогрев неэффективен. Так что более рационально располагать нагреватели на стенках метатэнка биогазовой установки.

Способы водяного обогрева

По способу расположения труб обогрев может быть наружным или внутренним. При внутреннем расположении обогрев эффективен, но ремонт и обслуживание нагревателей невозможны без останова и откачки системы. Потому подбору материалов и качеству выполнения соединений уделяют особое внимание.

Обогрев повышает производительность биогазовой установки и сокращает сроки переработки сырья

При наружном расположении обогревателей, требуется больше тепла (затраты на подогрев содержимого биогазовой установки намного выше), так как много тепла уходит на обогрев стенок. Зато система всегда доступна для ремонта, а прогрев более равномерный, так как греется среда от стенок. Еще один плюс такого решения — мешалки не могут повредить систему обогрева.

Чем утеплять

На дно котлована насыпается сначала выравнивающий слой песка, затем теплоизоляционный слой. Это может быть глина, перемешанная с соломой и керамзитом, шлаком. Все эти компоненты можно смешать, можно насыпать отдельными слоями. Их выравнивают в горизонт, устанавливают емкость биогазовой установки.

Бока биореактора можно утеплять современными материалами или классическими дедовскими методами. Из дедовских методов — обмазка глиной с соломой. Наносится в несколько слоев.

Из современных материалов можно использовать экструдированный пенополистирол высокой плотности, газобетонные блоки малой плотности, . Наиболее технологичен в данном случае пенополиуретан (ППУ), но услуги по его нанесению недешевы. Зато получается бесшовная теплоизоляция, которая минимизирует затраты на обогрев. Есть еще один теплоизоляционный материал — вспененное стекло. В плитах он очень дорог, но его бой или крошка стоит совсем немного, а по характеристикам он почти идеален: не впитывает влагу, не боится замерзания, хорошо переносит статические нагрузки, имеет низкую теплопроводность.

Биогаз

Метантанк биогазовой установки

Биогаз - газ, получаемый водородным или метановым брожением биомассы . Метановое разложение биомассы происходит под воздействием трёх видов бактерий . В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Первый вид - бактерии гидролизные, второй - кислотообразующие, третий - метанообразующие. В производстве биогаза участвуют не только бактерии класса метаногенов , а все три вида. Одной из разновидностей биогаза является биоводород, где конечным продуктом жизнедеятельности бактерий является не метан, а водород.

История

Человечество научилось использовать биогаз давно. В 1 тысячелетии до н. э. на территории современной Германии уже существовали примитивные биогазовые установки. Алеманам , населявшим заболоченные земли бассейна Эльбы, чудились Драконы в корягах на болоте. Они полагали, что горючий газ, скапливающийся в ямах на болотах - это дыхание Дракона. Чтобы задобрить Дракона, в болото бросали жертвоприношения и остатки пищи. Люди верили, что Дракон приходит ночью и его дыхание остаётся в ямах. Алеманы додумались шить из кожи тенты, накрывать ими болото, отводить газ по кожаным же трубам к своему жилищу и сжигать его для приготовления пищи. Оно и понятно, ведь сухие дрова найти было трудно, а болотный газ (биогаз) отлично решал эту проблему.

Состав и качество биогаза

Переработанный навоз, барда и другие отходы применяются в качестве удобрения в сельском хозяйстве. Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды .

Производство

Существуют промышленные и кустарные установки. Промышленные установки отличаются от кустарных наличием механизации, систем подогрева, гомогенизации, автоматики. Наиболее распространённый промышленный метод - анаэробное сбраживание в метантенках.

Хорошая биогазовая установка должна иметь необходимые части:

  • Емкость гомогенизации
  • Загрузчик твердого (жидкого)сырья
  • Реактор
  • Мешалки
  • Система смешивания воды и отопления
  • Газовая система
  • Насосная станция
  • Сепаратор
  • Приборы контроля
  • КИПиА с визуализацией
  • Система безопасности

Принцип работы установки

Биомасса (отходы или зеленая масса) периодически подаются с помощью насосной станции или загрузчика в реактор. Реактор представляет собой подогреваемый и утепленный резервуар, оборудованный миксерами. Стройматериалом для промышленного резервуара чаще всего служит железобетон или сталь с покрытием. В малых установках иногда используются композиционные материалы. В реакторе живут полезные бактерии, питающиеся биомассой. Продуктом жизнедеятельности бактерий является биогаз. Для поддержания жизни бактерий требуется подача корма, подогрев до 35-38 °С и периодическое перемешивание. Образующийся биогаз скапливается в хранилище (газгольдере), затем проходит систему очистки и подается к потребителям (котел или электрогенератор). Реактор работает без доступа воздуха, герметичен и неопасен.

Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. Биогазовая установка может заменить ветеринарно-санитарный завод, т. е. падаль может утилизироваться в биогаз вместо производства мясо-костной муки .

Среди промышленно развитых стран ведущее место в производстве и использовании биогаза по относительным показателям принадлежит Дании - биогаз занимает до 18 % в её общем энергобалансе. По абсолютным показателям по количеству средних и крупных установок ведущее место занимает Германия - 8000 тыс. шт. В Западной Европе не менее половины всех птицеферм отапливаются биогазом.

Биогаз в России

Потенциальное производство в России биогаза – до 72 млрд м³ в год. Потенциально возможное производство из биогаза электроэнергии в год составляет 151 200 ГВтч, тепла – 169 344 ГВтч.

Развивающиеся страны

Автомобильный транспорт

Volvo и Scania производят автобусы с двигателями, работающими на биогазе. Такие автобусы активно используются в городах Швейцарии : Берн , Базель , Женева , Люцерн и Лозанна . По прогнозам Швейцарской Ассоциации Газовой Индустрии к году 10 % автотранспорта Швейцарии будет работать на биогазе.

Муниципалитет Осло в начале 2009 года перевёл на биогаз 80 городских автобусов. Стоимость биогаза составляет € 0,4 - €0,5 за литр в бензиновом эквиваленте. При успешном завершении испытаний на биогаз будут переведены 400 автобусов

10.1. Общие сведения о получении биогаза

В последнее десятилетие большое внимание уделено развитию в нашей стране использованию нетрадиционых и возобносляемых источников энергии в связи с дефицитом собственных топливно-энергетических ресурсов. Одним из нетрадиционных и возобновляемых источников энергии может служить энергия получаемая из биомассы. Именно полученый в хозяйствах республики биогаз и выработка энергии из него позволит экономить природные н сжиженные газы.

Все источники биомассы можно разделить на три основные группы:

    к первой группе относятся специально выращенные для энергетических целей наземные растения. Наибольшее значение имеют лесоводческие энергетические хозяйства для выращивания различных пород деревьев: быстрорастущая порода ивы (разработка белорусских ученых), эбеновое дерево, эвкалипт, пальма, гибридный тополь и др. Одним из перспективных энергетических культур является является земляная груша (топинамбур), сладкое сорго, сахарный тростник.

    Ко второй группе источников биомассыотносится различные органические остатки и отходы:

а) биологические отходы животных (навоз крупного рогатого скота, помёт домашней птицы и др.);

б) остатки от сбора урожая сельскохозяйственных культур и побочные продукты их переработки, такие как солома ржи и пшеницы, кочерыжка кукурузного початка, стебель хлопка, скорлупа земляного ореха, отходы картофеля, рисовая шелуха и солома, лузга семечек, костра льна и др.;

в) отходы лесозаготовок, лесопиления и деревообработки: кора, опилки, древесные щепки, стружки;

г) промышленные сточные воды (в частности, текстильных, молочных, а так же других предприятий по переработке пищевых продуктов);

д) городские отходы (твёрдые и сточные воды).

    Третья группа – это водные растения, в том числе морские водоросли, среди которых гигантские ламинарии (бурые водоросли), водяной гиацинт. Океан рассматривается как основной поставщик крупных морских бурых водорослей и водорослей обитающих на дне (бентические растения), а так же водорослей плавающих в стоячей воде. Кроме того анализируется возможность использования биомассы эстуарий солёных и пресноводных болот.

Энергетический потенциал водных растений довольно высок. Так, например свежие морские водоросли 29,2 т.н.э/га/год; водяной гиацинт -53,6 т.н.э/га/год, а сахарный тростник 40,0 т.н.э/га/год /21/, /26/.

В зависимости от влажности и степени биоразлагаемости биомасса перерабатывается термохимическими методами (прямое сжигание, газификация, пиролиз, ожижение) или биологическиеми (анаэробная переработка, этапольная ферментация). С их помощью, из биомассы можно получить различные конечные энергетические продукты, включая тепло, пар, низко- и высококалорийные газы и различные жидкие топлива. Одним из самых широко используемых методов переработки биомассы остаётся прямое сжигание с целью получения тепла или электроэнергии. Наиболее перспективным процессом превращения биомассы являются термохимическая газификация, ферментация и анаэробная переработка, в результате которых получают синтез-газ (метан). Для Беларуси перспективным может стать развитие биоэнергетики на основе обновляемого энергетического ресурса, такого как древесина. Сюда можно отнести и выращивание быстрорастущих сортов древесины. В Беларуси уже ведутся исследования по выращиванию энергетических плантаций канадской ивы и сахалинского горца Вейриха. Эти деревья способны обновляться в течении 25 лет, а обрубку и сбор топлива проводят через 3 года, причём один гектар плантации способен дать в среднем 20 м3 древесины. Так же изучаются возможности выращивания и целесообразности выращивания в наших климатических условиях сахалинского бамбука и Сильвии широколистной. Разрабатывается и получает широкое применение технология сжигания древесных гранул.

10.2. Получении биогаза при анаэробном сбраживании

Одним из способов получения биогаза является способ анаэробного (без доступа кислорода), сбраживании или ферментации (перепревании) органических веществ биологической массы самого различного происхождения при температуре 30÷370 °С, а так же при постоянном перемешивании загруженного сырья, переодической загрузке исходного сырья в ёмкость для ферментации и выгрузке сброженного материала /17, с.357-364/. Емкость, в которой происходит процесс сбраживания, называется метантенком или реактором . При соблюдении всех оговоренных выше условий под действием имеющихся в биомассе бактерий органические вещества разлагаются и образуют смесь газов, которая называется биогаз .Для получения биогаза могут быть использованы отходы обработки сельскохозяйственных культур - силос, солома, пищевые и другие отходы ферм, навоз, птичий помёт, сточных вод и тому подобное сырьё содержащее органические вещества. Важно, чтобы среда сырья была нейтральной, без веществ которые мешают действию бактеррий, например мыла, стиральных порошков, антибиотиков / 20/.

Биогаз содержит 50÷80 % метана (СН 4), 50÷20 % диоксида углерода (СО 2), 0÷3 % сероводорода (Н 2 S), а так же примесей: водорода, аммиака и окислов азота. Биогаз не имеет неприятного запаха. Теплота сгорания 1 м 3 биогаза достигает 21÷29 МДж, что примерно эквивалентно сжиганию 0,6 л бензина, 0,85 л спирта, 1,7 кг дров или использованию 1,4÷1,6 кВт*ч электроэнергии. Эффективность сбраживания зависит от соблюдения анаэробных условий, температурного режима и продолжительности сбраживания. Сбраживание навоза возможно при температуре 30÷35 °С (мезоф и льный реж и м брожен и я ) и 50÷60°С и выше (термоф и льный реж и м ).

Продолжительность сбраживания навоза зависят от вида биомассы. Для навоза крупного рогатого скота и куриного помета продолжительность составляет 20 суток (сут), свиного навоза - 10 сут. Активность микробной реакции в значительной мере определяется соотношением углерода и азота. Наиболее благоприятные условия при соотношении С/N == 10:16.

С 1 м 3 реактора выход биогаза достигает 2÷3 м 3 биогаза, от птичьего помёта - 6 м 3 /21/. В сутки от одного животного можно получить следующее количество биогаза: крупный рогатый скот (массой 500÷600 кг) - < 1,5 м 3 ; свиньи (массой 80÷100 кг) - 0,2 м 3 ; куры или кролики - 0,015 м 3 .

Данные об удельном выходе биогаза от различных сельскохозяйственных отходов приведены в таблице 15.1 /17, с.357/.

Энергию, которую получают от сжигания биогаза можно использовать для различных нужд сельского хозяйства. С помощъю приводимого газовым двигателем внутреннего сгорания электрического генератора можно получать электроэнергию. Недостатком является то, что часть выработанной энергии необходимо исполльзовать на работу самой биогазовой установки (в некоторых установка до 50 % вырабатываемой энергии).

Биогаз можно сжигать как топливо в горелках отопительных установок, водогрейных котлов, газовых плит и использовать в холодильных установках абсорбционного типа, в автотракторных двигателях, в агрегатах инфракрасного излучения. Карбюраторный двигатель легко переводнтся на газ, в том числе на биогаз. Для этого карбюратор заменяют на смеситель. Не представляет трудностей перевод дизельных двигателей на работу с газом. При переводе с дизельного топлива на природный газ мощность двигателя снижается на 20 %, с природного на биогаз - на 10 %. Расход биогаза составляет в среднем 0,65 м 3 /кВт ч. Давление газа перед двигателем должно быть не менее 0,4 кПа /17, с.358/.

В животноводстве для подогрева воды потребность в биогазе на одно животное в год составляет: дойной коровы - 21-30 м 3 , свиньн - 1,4-4,9 м 3 . Большие значения этих цифр относятся к малым фермам, меньшие - к средним.

Таблица 15.1.

Выход биогаэа из органических отходов

Потребность в биогазе для отопления доильных помещений равна: при числе коров 40 - 164/327 м 3 /год; при числе коров 60 - 212/410 м 3 /год; при числе коров 80 - 262/530 м 3 /год. В числителе указаны данные при температуре наружного воздуха до - 10 °С, в знаменателе - при температуре наружного воздуха t н ниже - 10°С.

Для отопления птичников при наружной температуре - 10°С и внутренней 18°С требуется примерно 1,2 м 3 /ч на 1000 голов.

Остаток (метатановую бражку) можно использовать в качестве удобрения.

Б и огазовые установк и (БГУ) в зависимости от особенностей технологической схемы бывают трех типов: непрерывные, периодические и аккумулятивные /17, с.360/.

При непрерывной (проточной) схеме (рис. 15.1) свежий субстрат загружают в камеру сбраживания непрерывно или через определенные промежутки времени (от 2 до 10 раз в сутки), удаляя такое же коли-чество сброженной массы. Эта система позволяет получить максимальное количество биогаза, но требует больше материальных расходов.

При периодической (циклической) схеме (рис. 15.2) имеются две камеры сбраживания, которые загружают по очереди. В данном случае полезный объем камер используется менее эффективно, чем при непрерывной. Кроме того, нужны значительные запасы навоза или другого субстрата для их заполнения.

При аккумулятивной схеме хранилище для навоза служит одновременно камерой сбраживания и хранения перебродившего навоза до его выгрузки (рис. 15.3).