Электрический ток в полупроводниках собственная проводимость полупроводников. Электрический ток в полупроводниках. Полупроводниковый диод. Полупроводниковые приборы

Полупроводники занимают промежуточное место по электропроводности между проводниками и непроводниками электрического тока. К группе полупроводников относится гораздо больше веществ, чем к группам проводников и непроводников, взятых вместе. Наиболее характерными представителями полупроводников, нашедших практическое применение в технике, являются германий, кремний, селен, теллур, мышьяк, закись меди и огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

У полупроводников концентрация носителей свободного заряда увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов.

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам. Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок».



При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

При наличии примесей электропроводимость полупроводников сильно изменяется. Например, добавка примесей фосфора в кристалл кремния в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков.

Полупроводник, в который введена примесь (т.е. часть атомов одного сорта заменена на атомы другого сорта), называют примесным или легированным.

Различают два типа примесной проводимости – электронную и дырочную проводимости.

Так при легировании четырех валентного германия (Ge) или кремния (Si) пятивалентным – фосфор (P), сурьма (Sb), мышьяк (As) в месте нахождения атома примеси появляется лишний свободный электрон. При этом примесь называют донорной .

При легировании четырех валентного германия (Ge) или кремния (Si) трехвалентным - алюминием (Al), индием (Jn), бором (В), галлием (Ga) – возникает линяя дырка. Такие примеси называют акцепторными .

В одном и том же образце полупроводникового материала один участок может обладать р - проводимостью, а другой n – проводимостью. Такой прибор называют полупроводниковым диодом.

Приставка «ди» в слове «диод» означает «два», она указывает, что в приборе имеются две основные «детали», два тесно примыкающих один к другому полупроводниковых кристалла: один с р-проводимостью (это зона р), другой - с n - проводимостью (это зона п). Фактически же полупроводниковый диод - это один кристалл, в одну часть которого введена донорная примесь (зона п), в другую-акцепторная(зона р).

Если от батареи подвести к диоду постоянное напряжение «плюсом» к зоне р и «минусом» к зоне п , то свободные заряды - электроны и дырки - хлынут к границе, устремятся к рn -переходу. Здесь они будут нейтрализовать друг друга, к границе будут подходить новые заряды, и в цепи диода установится постоянный ток. Это так называемое прямое включение диода - заряды интенсивно движутся через него, в цепи протекает сравнительно большой прямой ток.

Теперь сменим полярность напряжения на диоде, осуществим, как принято говорить, его обратное включение - «плюс» батареи подключим к зоне п, «минус» - к зоне р. Свободные заряды оттянутся от границы, электроны отойдут к «плюсу», дырки - к «минусу» и в итоге pn - переход превратится в зону без свободных зарядов, в чистый изолятор. А значит, произойдет разрыв цепи, ток в ней прекратится.

Hе большой обратный ток через диод все же будет идти. Потому что, кроме основных свободных зарядов (носителей заряда) - электронов, в зоне п ,и дырок в зоне р - в каждой из зон есть еще и ничтожное количество зарядов обратного знака. Это собственные неосновные носители заряда, они существуют в любом полупроводнике, появляются в нем из-за тепловых движений атомов, именно они и создают обратный ток через диод. Зарядов этих сравнительно мало, и обратный ток во много раз меньше прямого. Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода. С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток. Часто ВАХ, для наглядности представляют в виде графиков.

Урок № 41-169 Электрический ток в полупроводниках. Полупроводниковый диод. Полупроводниковые приборы.

Полупроводник — вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость увеличивается. Наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик. Если полупроводник чистый(без примесей), то он обладает собственной проводимостью (невелика).

Собственная проводимость бывает двух видов:

1)электронная (проводимость «п «-типа) При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; При увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны — сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля. Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2)дырочная (проводимость «р»-типа). При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном — «дырка». Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение «дырки» равноценно перемещению положительного заряда. Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны нагреванием, освещением (фотопроводимость) и действием сильных электрических полей.

Зависимость R (t ): термистор

— дистанционное измерение t;

— противопожарная сигнализация

Зависимость R от освещенности: Фоторезистор

— фотореле

— аварийные выключатели

Общая проводимость чистого полупроводника складывается из проводимостей «р» и «n » -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У них существует собственная и примесная проводимость. Наличие примесей сильно увеличивает проводимость. При изменении концентрации примесей изменяется число носителей электрического тока — электронов и дырок. Возможность управления током лежит в основе широкого применения полупроводников. Существуют следующие примеси:

1) донорные примеси (отдающие) — являются дополнительными

поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике. Это проводники » n » — типа, т.е. полупроводники с донорными примесями, где основной носитель заряда — электроны, а неосновной — дырки. Такой полупроводник обладает электронной примесной проводимостью (пример – мышьяк).

2) акцепторные примеси (принимающие) создают «дырки», забирая в себя электроны. Это полупроводники » р «- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда –

дырки, а неосновной — электроны. Такой полупроводник обладает

дырочной примесной проводимостью (пример – индий).

Электрические свойства «р- n » переходов.

«р-п» переход (или электронно-дырочный переход) — область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия, электронов и дырок и образуется запирающий

электрический слой. Электрическое поле запирающего слоя препятствует

дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

В нешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего электрического поля ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны,

переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

П ри запирающем (обратном направлении внешнего электрического поля) ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой

утолщается, его сопротивление увеличивается.

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковый диод — полупроводник с одним «р-п» переходом.

П олупроводниковые диоды основные элементы выпрямителей переменного тока.

При наложении электрического поля: в одном направлении сопротивление полупроводника велико, в обратном — сопротивление мало.

Транзисторы. (от английских слов transfer — переносить, resistor – сопротивление)

Рассмотрим один из видов транзисторов из германия или кремния с введенными в них донорными и акцепторными примесями. Распределе­ние примесей таково, что создает­ся очень тонкая (порядка несколь­ких микрометров) прослойка полупроводника п-типа между дву­мя слоями полупроводника р-типа (см. рис.).

Эту тонкую прослойку называют основанием или базой. В кристалле образуются два р -n -перехода, прямые направле­ния которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изо­браженную на рисунке. При данном включении левый р -n -пе­реход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмиттером. Если бы не было правого р -n -перехода, в цепи эмиттер - база су­ществовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напряжения) и со­противления цепи, включая малое сопротивление прямо­го перехода эмиттер - база.

Батарея Б2 включена так, что правый р -n -переход в схеме (см. рис.) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называ­емой коллектором. Если бы не было левого р -n -перехо­да, сила тока в цепи коллектора была бы близка к ну­лю, так как

сопротивление обратного перехода очень велико. При существовании же тока в левом р -n -пере­ходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере (если на эмиттер подано отрицательное напряжение, то левый р -n -переход будет обратным и ток в цепи эмиттера и в цепи коллек­тора будет практически отсутствовать). При создании напряжения между эмиттером и базой основные носители полупровод­ника р-типа - дырки проникают в базу, где они явля­ются уже неосновными носителями. Поскольку толщина базы очень мала и число основных носителей (электро­нов) в ней невелико, попавшие в нее дырки почти не объ­единяются (не рекомбинируют) с электронами базы и про­никают в коллектор за счет диффузии. Правый р -n -переход закрыт для основных носителей заряда ба­зы - электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. выше) плоскости много меньше сечения в верти­кальной плоскости.

Сила тока в коллекторе, практически равная силе то­ка в эмиттере, изменяется вместе с током в эмиттере. Со­противление резистора R мало влияет на ток в коллекто­ре, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника перемен­ного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе R .

При большом сопротивлении резистора изменение напря­жения на нем может в десятки тысяч раз превышать изме­нение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно полу­чить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.

Применение транзисторов Свойства р -п-перехода в полупроводниках использу­ются для усиления и генерации электрических колебаний.

К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)

Зонная модель электронно-дырочной проводимости полупроводников

При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны Е V промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Е g .Выше запрещенной зоны расположена зона разрешенных для электронов энергетических состояний – зона проводимости Е c .


Зона проводимости при 0 К полностью свободна, а валентная зона полностью занята. Подобные зонные структуры характерны для кремния, германия, арсенида галлия (GaAs), фосфида индия (InP) и многих других твердых тел, являющихся полупроводниками.

При повышении температуры полупроводников и диэлектриков электроны способны получать дополнительную энергию, связанную с тепловым движением kT . У части электронов энергии теплового движения оказывается достаточно для перехода из валентной зоны в зону проводимости, где электроны под действием внешнего электрического поля могут перемещаться практически свободно.

В этом случае, в цепи с полупроводниковым материалом по мере повышения температуры полупроводника будет нарастать электрический ток. Этот ток связан не только с движением электронов в зоне проводимости, но и с появлением вакантных мест от ушедших в зону проводимости электронов в валентной зоне, так называемых дырок . Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. Электроны забрасываются в зону проводимости с уровня Ферми , который оказывается в собственном полупроводнике расположенным посередине запрещенной зоны (рис. 9.4).

Существенно изменить проводимость полупроводников можно, введя в них очень небольшие количества примесей. В металлах примесь всегда уменьшает проводимость. Так, добавление в чистый кремний 3 % атомов фосфора увеличивает электропроводность кристалла в 10 5 раз.

Небольшое добавление примеси к полупроводнику называется легированием.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла. Проводимость полупроводников при наличии примесей называется примесной проводимостью .

Различают два типа примесной проводимости электронную и дырочную проводимости. Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As) (рис. 9.5).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним. Он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорской примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз.

Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника. Такая проводимость, обусловленная свободными электронами, называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы, например, атомы индия (рис. 9.5)

На рисунке 6 показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа . Основными носителями свободного заряда в полупроводниках p -типа являются дырки.

Электронно-дырочный переход. Диоды и транзисторы

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n p -переход) – это область контакта двух полупроводников с разными типами проводимости.

На границе полупроводников (рис. 9.7) образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Способность n p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами . Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

На рисунке 9.8 приведена типичная вольт - амперная характеристика кремниевого диода.

Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами . Транзисторы бывают двух типов: p n p -транзисторы и n p n -транзисторы. В транзисторе n p n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа (рис.9.9).


В транзисторе p–n–p – типа всё наоборот. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э).

Полупроводниками называют вещества, занимающие в отношении электропроводности промежуточное положение между хорошими проводниками и хорошими изоляторами (диэлектриками).

Полупроводниками являются и химические элементы (германий Ge, кремний Si, селен Se, теллур Te), и соединения химических элементов (PbS, CdS, и др.).

Природа носителей тока в различных полупроводниках различна. В некоторых из них носителями зарядов являются ионы; в других носителями зарядов являются электроны .

Собственная проводимость полупроводников

Существует два вида собственной проводимости полупроводников: электронная проводимость и дырочная проводимость полупроводников.

1. Электронная проводимость полупроводников.

Электронная проводимость осуществляется направленным перемещением в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате внешних воздействий.

2. Дырочная проводимость полупроводников.

Дырочная проводимость осуществляется при направленном перемещении валентных электронов на вакантные места в парно-электронных связях - дырки. Валентный электрон нейтрального атома, находящегося в непосредственной близости к положительному иону (дырке) притягиваясь к дырке, перескакивает в неё. При этом на месте нейтрального атома образуется положительный ион (дырка), а на месте положительного иона (дырки) образуется нейтральный атом.

В идеально чистом полупроводнике без каких - либо чужеродных примесей каждому свободному электрону соответствует образование одной дырки, т.е. число участвующих в создании тока электронов и дырок одинаково.

Проводимость, при которой возникает одинаковое число носителей заряда (электронов и дырок), называется собственной проводимостью полупроводников.

Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Малейшие следы примесей коренным образом меняют свойства полупроводников.

Электрическая проводимость полупроводников при наличии примесей

Примесями в полупроводнике считают атомы посторонних химических элементов, не содержащиеся в основном полупроводнике.

Примесная проводимость - это проводимость полупроводников, обусловленная внесением в их кристаллические решётки примесей.

В одних случаях влияние примесей проявляется в том, что «дырочный» механизм проводимости становится практически невозможным, и ток в полупроводнике осуществляется в основном движением свободных электронов. Такие полупроводники называются электронными полупроводниками или полупроводниками n - типа (от латинского слова negativus - отрицательный). Основными носителями заряда являются электроны, а не основными - дырки. Полупроводники n - типа - это полупроводники с донорными примесями.


1. Донорные примеси.

Донорными называют примеси, легко отдающие электроны, и, следовательно, увеличивающие число свободных электронов. Донорные примеси поставляют электроны проводимости без возникновения такого же числа дырок.

Типичным примером донорной примеси в четырёхвалентном германии Ge являются пятивалентные атомы мышьяка As.

В других случаях практически невозможным становится движение свободных электронов, и ток осуществляется только движением дырок. Эти полупроводники называются дырочными полупроводниками или полупроводниками p - типа (от латинского слова positivus - положительный). Основными носителями заряда являются дырки, а не основными - электроны. . Полупроводники р - типа - это полу-проводники с акцепторными примесями.

Акцепторными называют примеси в которых для образования нормальных парноэлектронных связей недостаёт электронов.

Примером акцепторной примеси в германии Ge являются трёхвалентные атомы галлия Ga

Электрический ток через контакт полупроводников р- типа и n- типа p-n переход - это контактный слой двух примесных полупроводников p-типа и n-типа; p-n переход является границей, разделяющей области с дырочной (p) проводимостью и электронной (n) проводимостью в одном и том же монокристалле.

Прямой p-n переход

Если n-полупроводник подключён к отрицательному полюсу источника питания, а положительный полюс источника питания соединён с р-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в р-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников. Электроны, переходя границу, «заполняют» дырки, ток через р-n-переход осуществляется основными носителями заряда. Вследствие этого проводимость всего образца возрастает. При таком прямом (пропускном) направлении внешнего электрического поля толщина запирающего слоя и его сопротивление уменьшаются.

В этом направлении ток проходит через границу двух полупроводников.


Обратный р-n-переход

Если n-полупроводник соединён с положительным полюсом источника питания, а р-полупроводник соединён с отрицательным полюсом источника питания, то электроны в n-полупроводнике и дырки в р-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны, ток через р-n-переход осуществляется неосновными носителями заряда. Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Вследствие этого проводимость образца оказывается незначительной, а сопротивление - большим.

Образуется так называемый запирающий слой. При таком направлении внешнего поля электрический ток через контакт р- и n-полупроводников практически не проходит.

Таким образом электронно-дырочный переход обладает одно-сторонней проводимостью.

Зависимость силы тока от напряжения - вольт - амперная характеристика р-n перехода изображена на рисунке (вольт - амперная характеристика прямого р-n перехода изображена сплошной линией, вольт - амперная характеристика обратного р-n перехода изображена пунктирной линией).

Полупроводниковые приборы:

Полупроводниковый диод - для выпрямления переменного тока, в нем используют один р - n - переход с разными сопротивлениями: в прямом направлении сопротивление р - n - перехода значительно меньше, чем в обратном.

Фоторезисторы - для регистрации и измерения слабых световых потоков. С их помощью определяют качество поверхностей, контролируют размеры изделий.

Термисторы - для дистанционного измерения температуры, противопожарной сигнализации.

Полупроводник - это вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость (1/R) увеличивается.
- наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

1 электронная (проводимость "n " - типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2. дырочная (проводимость " p"- типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей

Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов
и называется электронно-дырочной проводимостью.


Полупроводники при наличии примесей

У них существует собственная + примесная проводимость
Наличие примесей сильно увеличивает проводимость.
При изменении концентрации примесей изменяется число носителей эл.тока - электронов и дырок.
Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

1) донорные примеси (отдающие)

Являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.
Это проводники " n " - типа , т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки.
Такой полупроводник обладает электронной примесной проводимостью.

Например - мышьяк.

2. акцепторные примеси (принимающие)

Создают "дырки", забирая в себя электроны.
Это полупроводники " p "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда - дырки, а неосновной - электроны.
Такой полупроводник обладает дырочной примесной проводимостью.

Например - индий.


Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода.