Атомная энергия. Ядерная энергия Как получают ядерную энергию

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Вклад ядерной техники и технологий в обеспечение безопасности государства принято разделять на сферы гражданского (мирного) и военного применения. Такое разделение в известном смысле условно, поскольку конверсия ядерных технологий имела место на всех этапах их развития.

Основные направления мирного использования ядерной энергии:

  • электроэнергетика;
  • теплоснабжение населенных пунктов (коммунальное) и промышленных объектов (промышленное), опреснение морской воды;
  • энергетические установки транспортного назначения, используемые в качестве энергоисточников на судах морского флота - ледоколах, лихтеровозах и др.;
  • освоение месторождений арктического континентального шельфа;
  • энергетические установки для энергоснабжения искусственных космических систем и объектов; ракетные двигатели;
  • исследовательские реакторные установки различного назначения;
  • получение изотопной продукции, необходимой для использования в медицине, технике, сельском хозяйстве;
  • промышленное применение подземных ядерных взрывов.
  • Основные направления военного использования ядерной энергии:
  • наработка оружейных ядерных материалов;
  • ядерное оружие;
  • энергетические установки, используемые для накачки энергией лазерного оружия;
  • энергетические установки для подводных лодок и надводных кораблей военно-морского флота и космических аппаратов.

Электроэнергетика. На большинстве действующих энергоблоков используются реакторы с водой под давлением (PWR, ВВЭР) или кипящие (BWR, РБМК), позволяющие достигнуть КПД электрогенерирования 31...33%. Быстрые и высокотемпературные (газоохлаждаемые) реакторы обеспечивают КПД электрогенерирования 41 ...43 %. Переход к газотурбинному преобразованию энергии при температуре за газоохлаждаемым реактором около 900 °С позволяет повысить КПД электрогенерирования до 48...49 %.

В 2002 г. общее мировое производство электроэнергии всех работающих атомных энергоблоков (441 блок суммарной установленной электрической мощностью 359 ГВт) равнялось 2574 ТВт-ч (примерно 16% производимой электроэнергии и 6 % мирового топливно-энергетического баланса).

Теплоснабжение с использованием атомных энергоисточников в настоящее время (при его ограниченных объемах) является достаточно подготовленным в техническом отношении, и его практическая реализация рассматривается как имеющая особое значение при замещении органического топлива ядер-ным. Применение ядерной энергетики в целях теплоснабжения населенных пунктов и промышленности началось практически одновременно с производством электричества ядерны-ми энергетическими реакторами.

Существуют три способа централизованного теплоснабжения от атомного источника:

  • атомная тепловая электростанция (АТЭЦ) для комбинированной выработки электроэнергии и теплоты в одном агрегате;
  • атомные котельные, служащие только для производства пара низкого давления и горячей воды (способ реализован в достаточно малых масштабах);
  • использование теплофикационных возможностей конденсационных АЭС для получения теплоты.


Отпуск теплоты для отопления
производят все АЭС России и стран СНГ, а также многие зарубежные (Болгария, Венгрия, Германия, Канада, США, Швейцария и др.). В соответствии с «Энергетической стратегией России на период до 2020 г.» производство тепловой энергии в России с использованием атомных источников увеличится с 6 млн Гкал в 1990 г. до 15 млн Гкал в 2020 г. Рост производства тепловой энергии предполагается за счет создания технических возможностей передачи тепловой энергии от АТЭЦ и действующих АЭС. При этом факторами, влияющими на экономическую эффективность теплоснабжения с использованием атомного энергоисточника, являются тип реакторной установки и капиталовложения в нее, концентрация тепловых нагрузок пользователей, протяженность магистральных тепловых сетей, а также сравнительные цены на ядерное и органическое топливо.

Использование тепловой энергии АЭС в промышленном масштабе в странах бывшего СССР было начато в конце 50-х гг. на Сибирской АЭС, где теплота использовалась для обогрева промышленных помещений и жилых домов. Высокая надежность и безопасность систем теплоснабжения была продемонстрирована на Билибинской АТЭЦ, работающей на Чукотке с 1974 г. Последний, четвертый, энергоблок был пущен в 1976 г. БиАТЭЦ - единственная в мире атомная станция, спроектированная для производства электроэнергии и теплоты для производственных и бытовых нужд Крайнего Севера в условиях вечной мерзлоты.

В России и за рубежом разработаны проекты реакторов средней и малой мощности, предназначенные только для теплофикационных целей - АСТ-500 (Россия), NHR-200 (Китай), SES-10 (Канада), Geyser (Швейцария и др.), а также для двухцелевого использования, т.е. для выработки теплоты и электричества -ВК-300, РУТА, АТЭЦ-200, АБВ, Саха-32 и КЛТ-40 (Россия), SMART (Республика Корея), CAREM-25 (Аргентина), MRX (Япония), ISIS (Италия).

Степень проработанности проектов варьируется от эскизного до рабочего. Для некоторых проектов построены и работают демонстрационные установки (SDR для SES-10, NHR-5 для NHR-200).

Теплота высокого температурного потенциала (до 1000 °С и выше), необходимая для химической промышленности, производства водорода, черной металлургии и других энергоемких технологий, может быть получена в охлаждаемых гелием реакторах. Реализация разработанных проектов таких реакторов и обеспечиваемых ими энерготехнологических комплексов технически реальна, но при современной стоимости органического топлива предпочтение отдается традиционным технологиям, использующим это топливо.

Опреснение. Одной из значительных и перспективных областей применения реакторов малой и средней мощности может стать опреснение морской воды и других сильно минерализованных и засоленных вод (шахтных и т.п.). Крупномасштабное производство пресной воды на основе применения ядерной энергии впервые было освоено в СССР. В 1973 г. в Казахстане был введен в эксплуатацию крупный промышленный водоопреснительный комплекс с быстрым реактором БН-350 с жидкометаллическим (натриевым) теплоносителем.

Многолетний опыт эксплуатации этого комплекса, многочисленные отечественные и зарубежные проектные проработки опреснительных установок с различными типами реакторов, детальное изучение проблемы в рамках исследовательских программ Международного агентства по атомной энергии (МАГАТЭ) позволяют считать ядерные реакторы экономически перспективными источниками энергоснабжения опреснительных установок, обеспечивающими возможность производства пресной воды на обширных территориях с децентрализованным энергоснабжением, что характерно для многих вододефицитных районов мира.

Транспортные энергетические установки.
Судовые и корабельные ядерные установки были спроектированы и построены в России, США, ФРГ, Японии, Великобритании, Франции, Китае. Первое в мире атомное гражданское судно - атомный ледокол "Ленин" -было построено в 1959 г., а далее введена в эксплуатацию серия атомных ледоколов ("Арктика", "Сибирь", "Россия", "Советский Союз", "Таймыр", "Вайгач", "Ямал") и контейнеровоз-лихтеровоз "Севморпуть". Опыт гражданского атомного судостроения в других странах (США - "Саванна", 1962 г.; ФРГ - "Отто Ганн", 1968 г.; Япония - "Муцу", 1974 г.) был несравненно меньшим.

Суммарная безаварийная работа ЯЭУ на российских ледоколах и лихтеровозе превысила 160 реакторо-лет; наработка оборудования на первых ЯЭУ составила более 100... 120 тыс.ч с сохранением работоспособности. За 35 лет эксплуатации атомных ледоколов и 9 лет эксплуатации "Севморпути" на них не было ядерно- или радиационно опасного инцидента, который привел бы к срыву рейса, облучению персонала или отрицательному воздействию на окружающую среду. Не отмечалось случаев профессионального заболевания, связанного с работой на реакторной установке.

Первые атомные подводные лодки были построены и переданы флоту в США в 1954 г., в России - в 1958 г. Впоследствии подводные лодки начали строить в Великобритании, Франции и Китае (соответственно 1963, 1971 и 1974 гг.). В России в период с 1957 г. по 1995 г. построена 261 атомная подводная лодка; основная часть АПЛ имеет по два ядерных реактора.

В условиях ограничения и сокращения вооружений на повестку дня поставлены задачи создания эффективной технологии утилизации снятых с эксплуатации атомных подводных лодок, а также - выбора и экономического обоснования новых областей применения эффективных технологий судовых ядерных энергетических установок. Среди последних лидируют:

плавучие атомные электростанции для снабжения электроэнергией и теплотой отдаленных регионов, не имеющих централизованного энергоснабжения.

К ним относятся

  • северное и восточное побережья России, территории вдоль сибирских рек, некоторые островные страны Тихого океана и др.;
  • плавучие атомные энергоблоки для опреснения морской воды;
  • подводные аппараты для изучения Мирового океана, обследования затонувших судов, освоения придонных территорий, промышленной добычи железо-марганцевых конкреций и других полезных ископаемых со дна морей и океанов.

Освоение месторождения арктического континентального шельфа. В 90-е гг. прошлого века в России началась разработка проектов освоения месторождений арктического континентального шельфа. Общие (извлекаемые) запасы углеводородов на акватории Северного Ледовитого океана оцениваются в 100 млрд т у.т. Исследования российских проектных организаций показали возможность применения ядерной энергии для решения широкого круга задач энергообеспечения морского нефтегазового технологического цикла на арктическом шельфе. Появились проекты ядерного энергообеспечения добычи углеводородов на платформах в Баренцевом море, транспорта газа по подводным газопроводам на большие расстояния, крупнотоннажных подводных челночных танкеров (проекты атомного подводного ледокольного танкера КБ «Малахит», г. Санкт-Петербург; атомного подводного танкера для перевозки жидкого топлива из России в Японию, КБ «Лазурит», г. Нижний Новгород).

В рамках проекта освоения гигантского Штокмановского газоконденсатного месторождения выполнена оценка и показана возможность создания атомной подводной станции для перекачки природного газа по протяженным подводным газопроводам на большой глубине. В проектах новых установок использованы технические решения из обширного российского опыта проектирования и эксплуатации ЯЭУ с реактором с водой под давлением для Военно-морского флота и атомных ледоколов.

Ядерные энергетические установки на космических аппаратах могут использоваться как бортовые источники энергии или/и двигатели и имеют безусловные преимущества для космических ракетных кораблей при дальних межпланетных полетах, когда химические источники и/или поток солнечного излучения не могут обеспечить необходимую энерговооруженность экспедиции.

В России одним из основных направлений в разработке космических ЯЭУ является использование реакторов со встроенными в активную зону термоэмиссионными преобразователями - эффективных источников энергии для доставки космических аппаратов на геостационарную и другие энергоемкие орбиты с помощью электрореактивной двигательной установки (ЭРДУ).

Первые летные испытания космической ЯЭУ «Бук» мощностью 3 кВт(эл.) с термоэмиссионными преобразователями, разрабатываемой с 1956 г., прошли в октябре 1970 г. (ИСЗ «Космос-367»). До 1988 г., когда был запущен ИСЗ «Космос-1932», в космос было отправлено 32 ЯЭУ «Бук».

Проводившиеся с 1958 г. разработки термоэмиссионной ЯЭУ «Топаз» мощностью 5...7 кВт(эл.) с многоэлементными электрогенерирующими каналами (ЭГК) включали проведение (начиная с 1970 г.) ресурсных испытаний на мощности семи образцов ЯЭУ. Первый в мире космический запуск термоэмиссионной ЯЭУ состоялся 02.02.1987 г. в составе экспериментального космического аппарата «Плазма-А» (ИСЗ «Космос-1818», орбита высотой 810/970 км). ЯЭУ проработала в автономном режиме 142 сут, вырабатывая свыше 7 кВт электроэнергии. Второй пуск ЯЭУ «Топаз» был осуществлен 10.07.1987 г. (ИСЗ Космос-1867», орбита высотой 797/813 км). Эта установка проработала в космосе 342 сут, выработав более 50 тыс. кВт-ч электроэнергии.

Значительный объем исследований, проектных и конструкторских разработок, дореак-торных и реакторных испытаний выполнен для решения задачи создания ядерного ракетного двигателя (ЯРД) прямого действия, в котором водород, нагретый в активной зоне до температуры 2500...2800 К, расширяется в сопловом аппарате, обеспечивая получение удельного импульса около 850...900 с. Наземные испытания реакторов-прототипов подтвердили техническую возможность создания ЯРД с тягой несколько десятков (сотен) тонн.

Одной из наиболее предпочтительных схем применения ядерных реакторов в составе космических аппаратов является их использование для двух целей: на этапе вывода космических аппаратов с низкой околоземной орбиты на орбиту функционирования, как правило геостационарную, для электроснабжения маршевой ЭРДУ и на последующем этапе целевого использования - для энергопитания бортовой и функциональной аппаратуры космических аппаратов на конечной орбите.

В качестве нетрадиционного подхода к созданию ЯЭУ, предназначенной для работы в двух режимах со значительно различающейся электрической мощностью 100. ..150 кВт и 20...30 кВт со сроком службы до 15- 20 лет, ракетно-космической корпорацией «Энергия» предлагается новый принцип построения ЯЭУ. Для этого варианта предусмотрено разделение функций преобразования тепловой энергии в электрическую в транспортном режиме и режиме целевого использования космического аппарата между двумя соответствующими типами преобразователей: встроенным в активную зону реактора термоэмиссионным преобразователем, который применяется для энергопитания ЭРДУ (транспортный режим) и имеет короткий ресурс до 1,5 года, и размещенным вне активной зоны (для длительного энергопитания аппаратуры космического аппарата). Необходимая для функционирования энергия (в последнем случае) доставляется теплоносителем, нагреваемым в активной зоне реактора.

Прототипом термоэлектрического генератора рассматриваемой двухрежимной ЯЭУ может служить термоэлектрический генератор, разрабатывавшийся в США для установки SP-100 (ядерная энергоустановка на основе быстрого реактора, охлаждаемого литием, в которой кремний-германиевый термоэлектрический преобразователь планировался в качестве основного генератора энергии).

Исследовательские реакторные установки. По данным МАГАТЭ, на август 2000 г. в 60 странах мира находится в эксплуатации 288 исследовательских реакторов, их суммарная тепловая мощность составляет 3205 МВт (рис. В.2.1). Число действующих исследовательских реакторов в основных странах мира: Россия - 63, США - 55, Франция - 14, Германия- 14, Япония-20, Канада-9, Китай - 9, Великобритания - 3.324 исследовательских реактора остановлены и выведены из эксплуатации по причинам выработки ресурса основного технологического оборудования или завершения программ запланированных исследований. Из них по 21 реактору имеются проекты и выполняются работы по снятию с эксплуатации.

Рис. В.2.1. Число исследовательских реакторов в мире и их суммарная тепловая мощность

Получение изотопной продукции. Радиоактивные и стабильные нуклиды используются в составе различных приборов и установок, а также в качестве меченых соединений для научных исследований, технической и медицинской диагностики, лечения и изучения технологических процессов (табл. В.2.1 и В.2.2).




Радионуклиды получают путем облучения специальных материалов-мишеней в ядерных реакторах, а также на сильноточных ускорителях заряженных частиц - циклотронах и электронных ускорителях (табл. В.2.3, В.2.4).

Некоторые радионуклиды выделяют из облученного ядерного топлива как продукты деления. Ряд короткоживущих радионуклидов, предназначенных в основном для медицинских целей, получают непосредственно в клиниках с помощью так называемых генераторов короткоживущих нуклидов, которые представляют собой генетически связанные системы из двух нуклидов: долгоживущего (материнского) и короткоживущего (дочернего), который можно выделять по мере его накопления.

Промышленное применение подземных ядерных взрывов (ПЯВ) исследовалось с конца 1950-х гг. в основном в СССР и США. Впоследствии эта деятельность была регламентирована такими международными соглашениями, как договор «Об ограничении подземных испытаний ядерного оружия» (1974 г.); договор «О подземных ядерных взрывах в мирных целях» (1976 г.), а также Протоколом к последнему договору (1990 г.). В соответствии с этими соглашениями мощность каждого промышленного ПЯВ не должна превышать 150 кт. Суммарная мощность всех проведенных «мирных» ПЯВ не превышает 3...4 Мт.

В 1957 г. в Национальной Ливерморской лаборатории им. Лоуренса (США) по инициативе Э. Теллера и Г. Сиборга была разработана экспериментальная программа "Ploughshare" («Плужный лемех»), в рамках которой в период до 1973 г., когда эта программа была прекращена по техническим и экологическим соображениям, было проведено 27 ПЯВ. Возможными направлениями практического применения ПЯВ рассматривались: разработка нефтеносных сланцев в шт. Колорадо, углубление Панамского канала, сооружение гаваней на Аляске и на северо-западе Австралии, строительство канала через перешеек Кра в Таиланде и т.п.

Из 27 ПЯВ вне полигона в шт. Невада было проведено 4 ПЯВ. Из них наиболее удачным был взрыв 1967 г. с целью интенсификации добычи газа на месторождении в шт. Нью-Мексико, способствовавший 7-кратному увеличению давления в скважине. Успешными были также 5 ПЯВ на полигоне в шт. Невада, проведенные с экскавационными (на выброс грунта) целями.

Значительно более масштабный характер носило использование промышленных ПЯВ в СССР. Начиная с 15 января 1965 г., когда на Грачевском нефтяном месторождении в Башкирии успешно был проведен эксперимент по интенсификации с помощью ПЯВ притока нефти и газа на промысловых скважинах, по 1987 г. было проведено 115 ПЯВ (из них 81 -на территории России).

Их использовали для глубинного сейсмозондирования земной коры и мантии (39); интенсификации добычи нефти (20) и газа (1); сооружения подземных емкостей для углеводородного сырья (36); глушения аварийных газовых фонтанов на промыслах (5); экскавации грунта на трассе канала в связи с реализацией проекта переброски части стока северных рек европейской части России на юг (1 тройной ПЯВ); создания плотин (2) и водохранилищ (9); дробления рудных залежей (3); захоронения биологически опасных промстоков (2); предупреждения газовых выбросов в угольной шахте (1).

Энергия ядерной реакции сосредоточена в ядре атома. Атом – крошечная частица из которых состоит вся материя во Вселенной.

Количество энергии при ядерном делении огромно и она может использоваться для создания электричества, но её сначала необходимо освободить от атома.

Получение энергии

Использование энергии ядерной реакции происходит с помощью оборудования, которое может управлять атомным делением для производства электроэнергии.

Топливо, используемое для реакторов и производства энергии чаще всего гранулы элемента урана. В ядерном реакторе атомы урана вынуждены разваливаться. Когда они разделились, атомы выделяют мельчайшие частицы, называемые продуктами деления. Продукты деления воздействуют на другие атомы урана для разделения – начинается цепная реакция. Энергия ядра, выделяющаяся из этой цепной реакции создает тепло. Тепло от атомного реактора сильно нагревает его, поэтому он должен охлаждаться. Технологически лучший охлаждающий агент обычно вода, но некоторые ядерные реакторы используют жидкий металл или расплавленные соли. Охлаждающее вещество, нагретое от ядра, производит пар. Пар воздействует на паровую турбину поворачивая её. Турбина через механическую передачу подключена к генератору, который вырабатывает электричество.
Реакторы управляются с помощью управляющих стержней которые можно настроить на количество вырабатываемого тепла. Управляющие стержни изготавливают из материала, как кадмий, гафний или бор чтобы поглощать некоторые из продуктов созданные ядерным делением. Стержни присутствуют во время цепной реакции для контроля реакции. Удаление стержней позволит сильнее развиться цепной реакции и создать больше электроэнергии.

Около 15 процентов мирового электричества генерируется атомными электростанциями.

Соединенные Штаты имеют более чем 100 реакторов, хотя США создает большую часть своей электроэнергии от ископаемого топлива и гидроэлектроэнергии.

В России 33 энергоблока на 10 атомных электростанциях -15% энергобаланса страны.

Литва, Франция и Словакия потребляют большую часть электроэнергии от атомных электростанций.

Ядерное топливо используемое для получения энергии

Уран – это топливо наиболее широко используемое для того чтобы производилась энергия ядерной реакции. Это потому что атомы урана относительно легко делятся на части. Конкретный тип урана для производства под названием U-235, встречается редко. U-235 составляет менее одного процента урана в мире.

Уран добывается в Австралии, Канаде, Казахстане, России, Узбекистане и должен быть обработан, прежде чем его можно будет использовать.

Поскольку ядерное топливо может использоваться для создания оружия, то производство относится к договору о нераспространении такого оружия по импортированию урана или плутония или другого ядерного топлива. Договор способствует мирному использованию топлива, а также ограничению распространения такого типа оружия.

Типичный реактор использует около 200 тонн урана каждый год . Сложные процессы позволяют некоторой части урана и плутония повторно обогащаться или перерабатываться. Это уменьшает количество добычи, извлечения и обработки.

Ядерная энергии и люди

Ядерная атомная энергия производит электричество, которое может использоваться для электропитания домов, школ, предприятий и больниц.

Первый реактор для производства электроэнергии был сооружен в штате Айдахо, США и экспериментально начал питать себя в 1951 году.

В 1954 году в Обнинске, Россия, была создана первая атомная электростанция, предназначенных для обеспечения энергии для людей.

Строительство реакторов с извлечением энергия ядерной реакции требует высокий уровень технологий и только страны, которые подписали договор о нераспространении могут получать уран или плутоний, который требуется. По этим причинам большинство атомных станций расположены в развитых странах мира.

Атомные электростанции производят возобновляемую, экологически чистые ресурсы. Они не загрязняют воздух или производят выбросы парниковых газов. Они могут быть построены в городской или сельской местности и радикально не изменяют окружающую среду вокруг них.

Радиоактивный материал электростанций

Радиоактивный материал в р еакторе безопасен так как охлаждается в отдельной структуре, называемой градирни. Пар превращается обратно в воду и может снова использоваться для производства электроэнергии. Избыточный пар просто перерабатывается в атмосферу, где он не вредит как чистая вода.

Однако, энергия ядерной реакции имеет побочный продукт в виде радиоактивного материала. Радиоактивный материал представляет собой совокупность нестабильных ядер. Эти ядра теряют свою энергию и могут повлиять на многие материалы вокруг них, в том числе живые организмы и окружающую среду. Радиоактивный материал может быть чрезвычайно токсичным, вызывая болезни, увеличивая риск для рака, болезни крови и распад костей.

Радиоактивными отходами является то, что осталось от эксплуатации ядерного реактора.

Радиоактивные отходы покрывают защитную одежду, которую носили рабочие, инструменты и ткани, которые были в контакте с радиоактивной пылью. Радиоактивные отходы долговечны. Материалы, как одежда и инструменты, могут быть радиоактивны тысячи лет. Государство регулирует, как эти материалы удаляются, чтобы не загрязнять что-нибудь еще.

Используемое топливо и стержни чрезвычайно радиоактивны. Гранулы используемого урана должны храниться в специальных контейнерах, которые выглядят как большие бассейны.Некоторые заводы хранят используемое топливо в надземных резервуарах сухого хранения.

Вода, охлаждающая топливо, не контактирует с радиоактивностью поэтому безопасна.

Известны также у которых принцип работы несколько другой.

Использование атомной энергии и радиационная безопасность

Критики использования энергии ядерной реакции беспокоятся, что хранилища для радиоактивных отходов будут течь, иметь трещины или разрушаться. Радиоактивный материал затем мог бы загрязнять почвы и грунтовых вод вблизи объекта. Это может привести к серьезным проблемам со здоровьем людей и живых организмов в этом районе. Всем людям пришлось бы эвакуироваться.

Это то, что произошло в Чернобыле, Украина, в 1986 году. Паровой взрыв в одном из электростанций четвертого ядерного реактора разрушил его и возник пожар. Образовалось облако радиоактивных частиц, который упал на землю или дрейфовал с ветром, а частицы вошли в круговорот воды в природе как дождь. Большинство радиоактивных выпадений упали в Белоруссии.

Экологические последствия Чернобыльской катастрофы произошли немедленно. В километрах вокруг объекта сосновый лес засох, а красный цвет мертвых сосен получил в этом районе прозвище Рыжий лес. Рыба от близлежащей реки Припять получила радиоактивность и люди больше не смогут её употребить. Крупный рогатый скот и лошади умерли. Более 100 000 человек эвакуированы после катастрофы, но количество человеческих жертв Чернобыля трудно определить.

Последствия радиационного отравления появляются только после многих лет. У таких болезней как рак трудно определить источник.

Будущее ядерной энергии

Реакторы используют деление или расщепление атомов для производства энергии.

Энергия ядерной реакции может также производиться путем слияния или присоединения атомов вместе. Производится . Солнце, например, постоянно подвергается ядерному синтезу водородных атомов формируя гелий. Так как жизнь на нашей планете зависит от Солнца, можно сказать, что расщепление делает возможным жизнь на Земле.

Атомные электростанции пока не имеют возможности безопасно и надежно производить энергию путем ядерного синтеза (соединения), но ученые исследуют ядерный синтез, потому что этот процесс скорее всего будет безопасным и экономически более эффективным как альтернативный вид энергии.

Энергия ядерной реакции огромна и должна использоваться людьми.

Эйнштейн установил связь между энергией и массой в своем уравнении:

где с = 300 000 000 м/с - скорость света;

таким образом тело человек массой 70 кг содержит в себе энергию

такое количество энергии реакторная установка РБМК-1000 выработает только задве тысячи массы разделившегося ядра. Разумеется до полного превращения массы в энергию еще очень далеко, но уже такое, не обнаруживаемое обычными весами, изменение массы топлива в реакторе позволяет получать гигантское количество энергии. Изменение массы топлива за год непрерывной работы в реакторе РБМК-1000 составляет приблизительно 0.3 г, но выделившаяся при этом энергия такая же, как при сжигании 3000000 (три миллиона) тон угля.%лет работы. Главная проблема научится превращать массу в полезную энергию. Первый шаг для решения этой проблемы человечество сделало освоив военное и мирное использование энергии деления ядер. В самом первом приближении процессы, происходящие в ядерном реакторе, можно описать как непрерывное деление ядер. При этом масса целого ядра до деления больше массы получившихся осколков. Разница составляет примерно 0.1

Мощность.

В практике, когда мы говорим о источнике энергии нас, как правило, интересует его мощность. Поднять тысячу кирпичей на пятый этаж строящегося дома, можно краном, а можно и с помощью двух рабочих с носилками. И в том, и в другом случае совершенная работа и затраченная энергия одинакова, отличаются только мощности источников энергии. Определение: Мощность источника энергии (машины), это количество полученной энергии (совершенной работы) в единицу времени.

мощность= энергия(работа)/время

размерность [Дж/сек = Вт]

Закон сохранения энергии

Как указывалось выше в окружающем нас мире происходит непрерывное преобразование энергии из одного вида в другую. Подбросив мячик мы вызвали цепочку преобразований механической энергии из одного вида в другой. Прыгающий мячик наглядно иллюстрирует закон сохранения энергии:

Энергия не может исчезать в никуда, или появляться из неоткуда, она может только переходит из одного вида в другой.

Мяч, совершив несколько подскоков, в конце концов останется неподвижным на поверхности. Поскольку первоначально переданная ему механическая энергия расходуется на:

а) преодоление сопротивления воздуха в котором движется мяч (переходит в тепловую энергию воздуха)

б) нагрев мяча и поверхности соударения. (изменение формы всегда сопровождается нагревом, вспомним как нагревается алюминиевая проволока при многократных перегибах)

Преобразование энергии

Возможности по преобразованию и использованию энергии являются показателем технического развития человечества. Первым, используемым человеком, преобразователем энергии можно считать парус - использование энергии ветра для перемещения по воде, дальнейшие развитее, это использование ветра и воды в ветряных и водяных мельницах. Изобретение и внедрение паровой машины произвело настоящую революцию в технике. Паровые машины на фабриках и заводах резко увеличили производительность труда. Паровозы и теплоходы сделали перевозки по суше и морю более быстрыми и дешевыми. На начальном этапе паровая машина служила для превращения тепловой энергии в механическую энергию вращающегося колеса, от которого с помощью различного рода передач (валы, шкивы, ремни, цепи), энергия передавалась на машины и механизмы.

Широкое внедрение электрических машин, двигателей превращающих электрическую энергию в механическую и генераторов для производства электроэнергии из механической энергии, ознаменовало собой новый скачёк в развитии техники. Появилась возможность передавать энергию на большие расстояния в виде электроэнергии, родилась целая отрасль промышленности энергетика.

В настоящее время создано большое количество приборов предназначенных, как для преобразования электроэнергии в любой вид энергии необходимый для жизнедеятельности человека: электромоторы, электронагреватели, лампы освещения, так и использующие непосредственно электроэнергию: телевизоры, приемники и т.п.

АЭС (с одноконтурным реактором)

История развития Атомной энергетики

Первая в мире АЭС опытно-промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт).

За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяющееся в активной зоне реактора 1, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235U, но и сырьевые материалы 238U и 232Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

Энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях и радиоактивном распаде.

По прогнозам, для обеспечения потребностей человечества в энергии органических топлив хватит на 4 - 5 десятилетий. В будущем основным энергоресурсом может стать солнечная энергия. На переходный период требуется источник энергии, практически неисчерпаемый, дешевый, возобновляемый и не загрязняющий окружающую среду. И хотя ядерная энергия не отвечает полностью всем перечисленным требованиям, она развивается быстрыми темпами и с нею связана наша надежда на решение глобального энергетического кризиса.

Освобождение внутренней энергии атомных ядер возможно делением тяжелых ядер или синтезом легких ядер.

Характеристика атома . Атом любого химического элемента состоит из ядра и вращающихся вокруг него электронов. Ядро атома состоит из нейтронов и протонов. В качестве общего названия протона и нейтрона используется термин нуклон. Нейтроны не имеют электрического заряда, протоны заряжены положительно , электроны - отрицательно . Заряд протона по модулю равен заряду электрона.

Число протонов ядра Z совпадает с его атомным номером в периодической системе Менделеева. Число нейтронов в ядре за небольшим исключением больше или равно числу протонов.

Масса атома сосредоточена в ядре и определяется массой нуклонов. Масса одного протона равна массе одного нейтрона. Масса электрона составляет 1/1836 массы протона.

В качестве размерности массы атомов используется атомная единица массы (а.е.м), равная 1,66·10 -27 кг. 1 а.е.м. приблизительно равна массе одного протона. Характеристикой атома является массовое число А, равное суммарному количеству протонов и нейтронов.

Наличие нейтронов позволяет двум атомам иметь различную массу при одинаковых электрических зарядах ядра. Химические свойства этих двух, атомов будут одинаковыми; такие атомы называются изотопами. В литературе слева от обозначения элемента вверху пишут массовое число, а снизу – число протонов.

В качестве ядерного топлива в таких реакторах используется изотоп урана с атомной массой 235 . Природный уран представляет собой смесь трех изотопов: уран-234 (0,006%), уран-235 (0,711%) и уран-238 (99,283%). Изотоп уран-235 обладает уникальными свойствами - в результате поглощения нейтрона малой энергии получается ядро урана-236, которое затем расщепляется - делится на две приблизительно равные части, называемые продуктами деления (осколками). Нуклоны исходного ядра распределяются между осколками деления, однако не все - в среднем 2-3 нейтрона при этом высвобождается. В результате деления масса исходного ядра полностью не сохраняется, часть ее превращается в энергию, главным образом в кинетическую энергию продуктов деления и нейтронов. Величина этой энергии для одного атома урана 235 равна около 200 МэВ.

В активной зоне обычного реактора мощностью 1000 МВт содержится около 1 тыс.т урана, из которого только 3 - 4 % составляет уран-235. Ежесуточно в реакторе расходуется 3 кг этого изотопа. Таким образом, для снабжения реактора топливом ежесуточно должно перерабатываться 430 кг уранового концентрата, а это в среднем составляет 2150 т урановой руды

В результате реакции деления в ядерном горючем образуются быстрые нейтроны. Если они взаимодействуют с соседними ядрами делящегося вещества и, в свою очередь, вызывают в них реакцию деления, происходит лавинообразное нарастание числа актов деления. Такая реакция деления называется цепной ядерной реакцией деления.

Наиболее эффективны для развития цепной реакции деления нейтроны с энергией менее 0,1 кэВ. Их называют тепловыми, так как их энергия сопоставима со средней энергией теплового движения молекул. Для сравнения-энергия, которой обладают нейтроны, образующиеся при распаде ядер составляет 5 МэВ. Их называют быстрыми нейтронами. Для использования таких нейтронов в цепной реакции необходимо их энергию уменьшить (замедлить). Эти функции выполняет замедлитель. В веществах-замедлителях быстрые нейтроны рассеиваются на ядрах, и их энергия переходит в энергию теплового движения атомов вещества-замедлителя. В качестве замедлителя наиболее широко используется графит, жидкие металлы (теплоноситель 1-го контура).

Быстрое развитие цепной реакции сопровождается выделением большого количества тепла и перегревом реактора. Для поддержания стационарного режима реактора в активную зону реактора вводятся регулирующие стержниизматериалов, сильно поглощающих тепловые нейтроны, например, из бора или кадмия.

Кинетическая энергия продуктов распада преобразуется в теплоту. Теплота поглощается теплоносителем, циркулирующим в ядерном реакторе, и передается к теплообменнику (1-й замкнутый контур), где производится пар (2-й контур), который вращает турбину турбогенератора. Теплоносителем в реакторе служит жидкий натрий (1-й контур) и вода (2-й контур).

Уран-235 относится к невозобновляемым ресурсам и при использовании его полностью в ядерных реакторах он исчезнет навсегда. Поэтому привлекательным выглядит использование в качестве исходного топлива изотопа уран-238, встречающегося в гораздо больших количествах. Этот изотоп не поддерживает цепную реакцию под воздействием нейтронов. Но он может поглощать быстрые нейтроны, образуя при этом уран-239. В ядрах урана-239 начинается бета-распад и образуется нептуний-239 (не встречающийся в природе). Этот изотоп также распадается и превращается в плутоний-239 (не встречающийся в природе). Плутоний-239 даже в большей степени подвержен тепловой нейтронной реакции деления. В результате реакции деления в ядерном горючем плутоний-239 образуются быстрые нейтроны, которые вместе с ураном образуют новое горючее и продукты деления, выделяющие в тепловыделяющих элементах (ТВЭЛах) теплоту. В результате из килограмма природного урана можно получить в 20-30 раз больше энергии, чем в обычных ядерных реакторах на уране-235.

В современных конструкциях в качестве теплоносителя используют жидкий натрий. В этом случае реактор может работать при более высоких температурах, увеличивая тем самым термический КПД электростанции до 40% .

Однако физические свойства плутония: токсичность, малая критическая масса для самопроизвольной реакции деления, воспламенение в кислородной среде, хрупкость и самонагрев в металлическом состоянии делают его трудным в производстве, обработке и обращении. Поэтому реакторы-размножители пока менее распространены, чем реакторы на тепловых нейтронах.

4. Атомные электростанции

В мирных целях атомная энергия используется в атомных электростанциях. Доля АЭС в мировом производстве электроэнергии составляет около 14% .

В качестве примера рассмотрим принцип получения электроэнергии на Воронежской АЭС. В активную зону реактора по каналам направляют под давлением 157 ATM (15,7 МПа) жидкий металлический теплоноситель с температурой на входе 571 К, который нагревается в реакторе до 595 К. Металлический теплоноситель направляется в парогенератор, в который поступает холодная вода, превращающаяся в пар с давлением 65,3 ATM (6,53 МПа). Пар подается на лопатки паровой турбины, которая вращает турбогенератор.

В ядерных реакторах температура производимого пара существенно ниже, чем в парогенераторе ТЭС на органическом топливе. В результате термический КПД АЭС, работающих с водой в качестве теплоносителя, только 30%. Для сравнения, у электростанций, работающих на угле, нефти или газе он достигает 40%.

Атомные электростанции используются в системах электро- и тепло-снабжения населения, а мини-АЭС на морских судах (атомоходы, атомные подводные лодки) для электропривода гребных винтов).

В военных целях ядерную энергию используют в атомных бомбах. Атомная бомба является особым реактором на быстрых нейтронах , в котором происходит быстрая неуправляемая цепная реакция с большим коэффициентом размножения нейтронов. В ядерном реакторе атомной бомбы не предусматриваются замедлители. Размеры и масса устройства вследствие этого становятся небольшими.

Ядерный заряд бомбы на уране-235 делится на две части, в каждой из которых цепная реакция невозможна. Для осуществления взрыва одна из половин заряда выстреливается в другую, а при их соединении почти мгновенно происходит взрывная цепная реакция. Взрывная ядерная реакция приводит к выделению огромной энергии. При этом достигается температура около ста миллионов градусов. Происходит колоссальный рост давления и образуется мощная взрывная волна.

Первый ядерный реактор был пущен в Чикагском университете (США) 2 декабря 1942 года. Первая атомная бомба была взорвана 16 июля 1945 года в Нью-Мехико (г.Аламогордо). Она представляла собой устройство, созданноенапринципе деления плутония. Бомба состояла из плутония, окруженного двумя слоями химического взрывчатого вещества с взрывателями.

Первой атомной электростанцией, давшей ток в 1951 году, была АЭС EBR -1 (США). В бывшем СССР - Обнинская АЭС (Калужская обл, дала ток 27 июня 1954). Первая в СССР АЭС с реактором на быстрых нейтронах мощностью 12 МВт была пущена в 1969 году в городе Димитровграде. В 1984 году в мире работало 317 атомных электростанций суммарной мощностью 191 тысяча МВт, что составило на тот период 12% (1012 кВт-ч) мирового производства электроэнергии. Крупнейшей в мире АЭС по состоянию на 1981 год была АЭС "Библис"(ФРГ), тепловая мощность реакторов которой составляла 7800 МВт.

Термоядерными реакциями называются ядерные реакции синтеза легких ядер в более тяжелые. Элементом, используемым при термоядерном синтезе, является водород. Главное преимущество термоядерного синетза - практически неограниченные ресурсы исходного сырья, которое может быть добыто из морской воды. Водород в том или ином виде составляет 90 % всего вещества. Топлива для термоядерного синтеза, содержащегося в мировом океане, хватит более чем на 1 млрд лет (солнечное излучение и человечество в солнечной системе просуществует ненамного дольше). Сырье для термоядерного синтеза, содержащееся в 33 км океанской воды эквивалентно по своему энергосодержанию всем ресурсам твердых топлив (на Земле воды в 40 миллионов раз больше). Энергия дейтерия, заключенного в стакане воды, эквивалентна сжиганию 300 литров бензина.

Существует 3 изотопа водорода : их атомные массы -1,2 (дейтерий), 3 (тритий). Эти изотопы могут воспроизводить такие ядерные реакции, при которых суммарная масса конечных продуктов реакции меньше, чем суммарная масса веществ, вступивших в реакцию. Разница в массах, как и в случае реакции деления, составляет кинетическую энергию продуктов реакции. В среднем уменьшение массы вещества, участвующего в реакции термоядерного синтеза, на 1 а.е.м. соответствует выделению 931 МэВ энергии:

H 2 +H 2 = H 3 + нейтрон +3,2 МэВ,

H 2 +H 2 = H 3 + пpoтон +4,0 МэВ,

H 2 +H 3 = Не 4 + нейтрон +17,б МэВ.

Трития в природе практически нет. Его можно получить при взаимодействии нейтронов с изотопами лития:

Li 6 +нейтрон = Не 4 +H 3 + 4,8 МэВ.

Слияние ядер легких элементов не происходит естественно (исключая процессы в космосе). Для того, чтобы заставить вступить ядра в реакцию синтеза требуются высокие температуры (порядка 107 -109К). При этом газ представляет собой ионизированную плазму. Проблема удержания этой плазмы представляет собой главное препятствие на пути использования этого метода получения энергии. Температура порядка 10 миллионов градусов характерна для центральной части Солнца. Именно термоядерные реакции являются источником энергии, обеспечивающим излучение Солнца и звезд.

В настоящее время ведутся теоретические и экспериментальные работыпоисследованию способов магнитного и инерционного удержания плазмы.

Метод использования магнитных полей. Создается магнитное поле, которое пронизывает канал движущейся плазмы. Заряженные частицы,из которых состоит плазма, во время движения в магнитном поле подвергаются воздействию сил, направленных перпендикулярно движению частиц и линиям магнитного поля. Вследствие действия этих сил частицы будут двигаться по спирали вдоль линий поля. Чем сильнее магнитное поле, тем плотнее становится поток плазмы, изолируясь тем самым от стенок оболочки.

Инерционное удержание плазмы . В реакторе осуществляются термоядерные взрывы с частотой 20 взрывов в секунду. Для реализации этой идеи частицу термоядерного топлива нагревают с помощью сфокусированного излучения 10 лазеров до температуры зажигания реакции синтеза за время, прежде- чем она успеет разлететься на заметное расстояние вследствие теплового движения атомов (10-9 с).

Термоядерный синтез лежит в основе водородной (термоядерной) бомбы. В такой бомбе происходит самоподдерживающаяся термоядерная реакция взрывного характера. Взрывчатым веществом является смесь дейтерия и трития. В качестве источника энергии активации (источник высоких температур) используется энергия ядерной бомбы деления. Первая в мире термоядерная бомба была создана в СССР в 1953 году.

В конце 50-х годов в СССР начались проработки идеи термоядерного синтеза в реакторах типа ТОКАМАК (тороидальная камера в магнитном поле катушки). Принцип работы заключается в следующем: тороидальная камера вакуумируется и заполняется газовой смесью дейтерия и трития. По смеси пропускается ток в несколько миллионов ампер. За 1-2 секунды температура смеси поднимается до сотен тысяч градусов. В камере образуется плазма. Дальнейший разогревее осуществляется инжекцией нейтральных атомов дейтерия и трития с энергией 100 - 200 кэВ. Температура плазмы поднимается до десятков миллионов градусов и начинается самоподдерживающаяся реакция синтеза. Через 10-20 минут в плазме накопятся тяжелые элементы из частично испаряющегося материала стенок камеры. Плазма остывает, термоядерное горение прекращается. Камеру нужно снова отключать и очистить от накопившихся примесей. Размеры тора при тепловой мощности реактора 5000 МВт следующие: Внешний радиус -10м; внутренний радиус - 2,5 м.

Исследования по изысканию способа управления термоядерными реакциями, т.е. применению термоядерной энергии в мирных целях, развиваются с большой интенсивностью.

В 1991 году на совместной европейской установке в Великобритании впервые было достигнуто значительное энерговыделение в ходе управляемого термоядерного синтеза. Оптимальный режим поддерживался в течение 2 секунд и сопровождался высвобождением энергии порядка 1,7 МВт. Максимальная температура составила 400 млн градусов.

Термоядерный электрогенератор. При использовании дейтерия в качестве термоядерного топлива две трети энергии должно освобождаться в виде кинетической энергии заряженных частиц. Электромагнитными методами эта энергия может быть превращена в электрическую энергию.

Электроэнергия может быть получена при стационарном режиме работы установки и импульсном. В первом случае получающиеся в результате самоподдерживающейся реакции синтеза ионы и электроны тормозятся магнитным полем. Ионный ток от электронного отделяется при помощи поперечного магнитного поля. КПД такой системы при прямом торможении будет около 50%, а остальная энергия перейдет в тепло.

Термоядерные двигатели (не реализованы). Область применения: космические аппараты. Полностью ионизированная дейтериевая плазма при температуре 1 миллиард градусов Цельсия удерживается в виде шнура линейным магнитным полем катушек из сверхпроводников. Рабочее тело подается в камеру через стенки, охлаждая их, и нагревается, обтекая плазменный шнур. Осевая скорость истечения ионов на выходе из магнитного сопла 10000 км/с.

В 1972 году на одном заседаний Римского клуба - организации, изучающей причины и занимающейся поиском решений проблем планетарного масштаба - прозвучал доклад, подготовленный учеными Э. фон Вайнцзеккером, А. Х.Ловинсом и произведший эффект разорвавшейся бомбы. Согласно данным, приведенным в докладе находящихся на планете источников энергии - угля, газа, нефти и урана - хватит до 2030 года. Для добычи угля, с которого можно будет получить энергии на 1 доллар, потребуется затратить энергию, стоимостью 99 центов.

Урана-235, служащего топливом для атомных электростанций, в природе не так уж и мною: всего в мире 5% от общего количества урана, 2% из них приходится на Россию. Поэтому АЭС могут использоваться только во вспомогательных целях. Исследования ученых, пытавшихся получать энергию из плазмы на "ТОКАМАКах", остались по сей день дорогостоящими упражнениями. В 2000 году появились сообщения, что Европейское атомное сообщество (ЦЕРН) и Япония строят первый сегмент ТОКАМАКа.

Спасением может оказаться не "мирный атом" АЭС, а "военный" – энергия термоядерной бомбы.

Свое изобретение российские ученые назвали котел взрывного сгорания (КВС). В основе принципа действия КВС лежит взрыв сверхмалой термоядерной бомбы в специальном саркофаге - котле. Взрывы происходят регулярно. Интересно, что в КВС давление на стенки котла во время взрыва оказывается меньше, чем в цилиндрах обыкновенного автомобиля.

Для безопасной работы КВС внутренний диаметр котла должен быть не менее 100 метров. Двойные стальные стенки и железнобетонная оболочка 30 метровой толщины будут гасить колебания. На сооружение его только высококачественной стали пойдет как на два современных военных линкора. Возводить КВС планируется 5 лет. В 2000 году в одном из закрытых городов России был подготовлен проект по строительству экспериментальной установки под "бомбу" в 2-4 килотонны ядерного эквивалента. Стоимость этого КВС - 500 миллионов долларов. Ученые подсчитали, что он окупится через год, и еще 50 лет будет давать практически бесплатные электроэнергию и тепло. По словам руководителя проекта, стоимость энергии, эквивалентной выделяемой при сжигании тонны нефти, будет менее 10 долларов.

40 КВГ способны удовлетворить потребности всей национальной энергетики. Сотня - всех стран Евразийского континента.

В 1932 году был экспериментально обнаружен позитрон - частица с массой электрона, но с положительным зарядом. Вскоре было высказано предположение о существовании в природе зарядовой симметрии: а) у каждой частицы должна быть античастица; б) законы природы не изменяются при замене всех частиц соответствующими античастицами и наоборот. Антипротон и антинейтрон были открыты в середине 50-х годов. В принципе может существовать антивещество, состоящее из атомов, в ядра которых входят антипротоны и антинейтроны, а их оболочку образуют позитроны.

Сгустки антивеществ космологических размеров составляли бы антимиры, но они не обнаружены в природе. Антивещество синтезировано лишь в лабораторных масштабах. Так, в 1969 году на Серпуховском ускорителе советские физики зарегистрировали ядра антигелия, состоящие из двух антипротонов и одного антинейтрона.

Применительно к возможностям преобразования энергии антивещество примечательно тем, что при соприкосновении его с веществом происходит аннигиляция (уничтожение) с высвобождением колоссальной энергии (оба типа вещества исчезают, превращаясь в излучение). Так, электрон и позитрон, аннигилируя, порождают два фотона. Один вид материи – заряженные массивные частицы - переходит в другой вид материи - в нейтральные безмассовые частицы. Пользуясь соотношением Эйнштейна об зквивалентности энергии и массы (E=mc 2), нетрудно рассчитать, что при аннигиляции одного грамма вещества возникает такая же энергия, какую можно получить при сжигании 10000 тонн каменного угля, а одной тонны антивещества было бы достаточно, чтобы обеспечить на год энергией всю планету.

Астрофизики полагают, что именно аннигиляция обеспечивает гигантскую энергию квазизвездных объектов - квазаров.

В 1979 году группе американских физиков удалось зарегистрировать наличие природных антипротонов. Их принесли космические лучи.