Курсовая работа применение интеграла. Применение интеграла

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

_ _ ___ ___ ___ _____
| || | / _ \ / _ \ |__ \ | ____|
| || |_ | | | | | | | |) | | |__
|__ _| | | | | | | | | / / |___ \
| | | |_| | | |_| | / /_ ___) |
|_| \___/ \___/ |____| |____/

Введите число, изображенное выше:

Подобные документы

    Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация , добавлен 26.01.2015

    Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация , добавлен 05.07.2016

    История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа , добавлен 16.10.2013

    Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа , добавлен 23.02.2011

    Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа , добавлен 21.01.2008

    История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

    реферат , добавлен 07.09.2009

    Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

    дипломная работа , добавлен 20.07.2009

Тема исследования

Применение интегрального исчисления в планировании расходов семьи

Актуальность проблемы

Все чаще в социальных и экономических сферах при вычислении степени неравенства в распределении доходов используется математика, а именно, интегральное исчисление. Изучая практическое применение интеграла мы узнаем:

  • Как интеграл и вычисление площади с помощью интеграла помогает в распределении материальных затрат?
  • Как интеграл поможет в накоплении денег на отпуск.

Цель

спланировать расходы семьи с использованием интегрального вычисления

Задачи

  • Изучить геометрический смысл интеграла.
  • Рассмотреть методы интегрирования в социальной и экономической сферах жизни.
  • Составить прогноз материальных затрат семьи при ремонте квартиры с использованием интеграла.
  • Рассчитать объем потребления энергии семьи на год с учетом интегрального исчисления.
  • Расчитать сумму накопительного вклада в Сбербанк на отпуск.

Гипотеза

интегральное исчисление помогает в экономичных расчетах при планировании доходов и расходов семьи.

Этапы исследования

  • Изучили геометрический смысл интеграла и методы интегрирования в социальной и экономической сферах жизни.
  • Произвели расчет материальных затрат, необходимых при ремонте квартиры с помощью интеграла.
  • Расчитали объем потребления электроэнегрии в квартире и затраты на электроэнергию семьи на год.
  • Рассмотрели один из вариантов полонения доходов семьи через вклады в Сбербанк с помощью интеграла.

Объект исследования

инегральное исчисление в социальной и экономических сферах жизни.

Методы

  • Анализ литературы по теме "Практическое применение интгрального исчисления"
  • Изучение методов интегрирования при решении задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Анализ расходов и доходов семьи с помощью интегрального вычисления.

Ход работы

  • Обзор литературы по теме "Практическое применение интегрального исчисления"
  • Решение системы задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Расчет расходов и доходов семьи с помощью интегрального вычисления: ремонт комнаты, объем электроэнергии, вклады в Сбербанк на отпуск.

Наши результаты

Как интеграл и вычисление объема с помощью интеграла помогает в прогнозировании объемов потребления электроэнергии?

Выводы

  • Экономический расчет необходимых средств при ремонте квартиры можно быстрее и более точно выполнить с помощью интегрального вычисления.
  • Расход объемов электроэнергии семьи легче и быстрее рассчитать с помощью интегрального вычисления и программы Microsoft Office Excel, а значит прогнозировать затраты семьи на оплату электроэнергии на год.
  • Прибыль от вкладов в сбербанк можно рассчитать с помощью интегрального вычисления, значит спланировать отпуск семьи.

Список ресурсов

Печатные издания:

  • Учебник. Алгебра и начала анализа 10-11 класс. А.Г. Мордкович. Мнемозина. М: 2007
  • Учебник. Алгебра и начала анализа 10-11 класс. А. Колмогоров Просвещение. М: 2007
  • Математика для социологов и экономистов. Ахтямов А.М. М.: ФИЗМАТЛИТ, 2004. - 464 с.
  • Интегральное вычисление.Справочник по Высшей Математике М. Я. Выгодского, Просвещение, 2000

Сведения из истории появления производной:Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам
придёт».
Термин «производная» - (франц. deriveе - позади, за) ввёл в 1797 г. Ж. Лагранж. Он же ввёл
современные обозначения y " , f ‘.
обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон.
И. Ньютон называл производную флюксией, а саму функцию - флюентой.
Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так:
Лагранж Жозеф Луи (1736-1813)
французский математик и механик

Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот
явился Ньютон.» А.Поуг.
Исаак Ньютон (1643-1727) один из создателей
дифференциального исчисления.
Главный его труд- «Математические начала
натуральной философии»-оказал колоссальное
влияние на развитие естествознания, стал
поворотным пунктом в истории естествознания.
Ньютон ввёл понятие производной, изучая законы
механики, тем самым раскрыл её механический
смысл.

Что называется производной функции?

Производной функции в данной точке называется предел
отношения приращения функции в этой точке к
приращению аргумента, когда приращение аргумента
стремится к нулю.

Физический смысл производной.

Скорость есть производная от пути по времени:
v(t) = S′(t)
Ускорение есть производная
скорости по времени:
a(t) = v′(t) = S′′(t)

Геометрический смысл производной:

Угловой коэффициент касательной к графику
функции равен производной этой функции,
вычисленной в точке касания.
f′(x) = k = tga

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает
электрический ток. Под электрическим током понимают
направленное движение свободных электрически заряженных
частиц.
Количественной характеристикой электрического тока является сила
тока.
В
цепи электрического тока электрический заряд меняется с
течением времени по закону q=q (t). Сила тока I есть производная
заряда q по времени.
В электротехнике в основном используется работа переменного тока.
Электрический ток, изменяющийся со временем, называют
переменным. Цепь переменного тока может содержать различные
элементы: нагревательные приборы, катушки, конденсаторы.
Получение переменного электрического тока основано на законе
электромагнитной индукции, формулировка которого содержит
производную магнитного потока.

Производная в химии:

◦ И в химии нашло широкое применение дифференциальное
исчисление для построения математических моделей химических
реакций и последующего описания их свойств.
◦ Химия – это наука о веществах, о химических превращениях
веществ.
◦ Химия изучает закономерности протекания различных реакций.
◦ Скоростью химической реакции называется изменение
концентрации реагирующих веществ в единицу времени.
◦ Так как скорость реакции v непрерывно изменяется в ходе
процесса, ее обычно выражают производной концентрации
реагирующих веществ по времени.

Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения
пропорционально числу населения в данный момент времени t через N(t), . Модель
Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860
годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение:

Немного из истории:

История понятия интеграла уходит корнями
к математикам Древней Греции и Древнего
Рима.
Известны работы учёного Древней Греции Евдокса Книдского (ок.408-ок.355 до н.э.) на
нахождение объёмов тел и вычисления
площадей плоских фигур.

Большое распространение интегральное исчисление получило в XVII веке. Учёные:
Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от
друга и практически одновременно формулу, названную в последствии формулой
Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу
вывели философ и физик никого не удивляет, ведь математика-язык, на котором
говорит сама природа.

Символ введен
Лейбницем (1675 г.). Этот знак является
изменением латинской буквы S
(первой буквы слова сумма). Само слово интеграл
придумал
Я. Бернулли (1690 г.). Вероятно, оно происходит от
латинского integero, которое переводится как
приводить в прежнее состояние, восстанавливать.
Пределы интегрирования указал уже Л.Эйлер
(1707-1783). В 1697 году появилось название
новой ветви математики - интегральное
исчисление. Его ввёл Бернулли.

В математическом анализе интегралом функции называют
расширение понятия суммы. Процесс нахождения интеграла
называется интегрированием. Этот процесс обычно используется при
нахождений таких величин как площадь, объём, масса, смещение и т.
д., когда задана скорость или распределение изменений этой величины
по отношению к некоторой другой величине (положение, время и т. д.).

Что такое интеграл?

Интеграл - одно из важнейших понятий математического анализа, которое
возникает при решении задач о нахождении площади под кривой, пройденного пути при
неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о
восстановлении функции по её производной

Ученые стараются все физические
явления выразить в виде
математической формулы. Как
только у нас есть формула, дальше
уже можно при помощи нее
посчитать что угодно. А интеграл
- это один из основных
инструментов работы с
функциями.

Методы интегрирования:

1.Табличный.
2.Сведение к табличному преобразованием подынтегрального
выражения в сумму или разность.
3.Интегрирование с помощью замены переменной (подстановкой).
4.Интегрирование по частям.

Применение интеграла:

◦ Математика
◦ Вычисления S фигур.
◦ Длина дуги кривой.
◦ V тела на S параллельных
сечений.
◦ V тела вращения и т.д
Физика
Работа А переменной силы.
S – (путь) перемещения.
Вычисление массы.
Вычисление момента инерции линии,
круга, цилиндра.
◦ Вычисление координаты центра
тяжести.
◦ Количество теплоты и т.д.



Владимир 2002 год

Владимирский государственный университет, Кафедра общей и прикладной физики

Вступление

Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р у л л и (1690 г.) Вероятн о, оно происходит от латинского integro , которое переводится как приводи ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инт грал иное: слово integer означает целый.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что в е первообразные функции отличаются на произвольн ю постоянн ю. b

называют определенным интегралом (обо начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертика ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равн ю бесконечно малой величине f(х) . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезн м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Ч бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

HTML-версии работы пока нет.

Подобные документы

    Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация , добавлен 26.01.2015

    Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация , добавлен 05.07.2016

    История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа , добавлен 16.10.2013

    Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа , добавлен 23.02.2011

    Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа , добавлен 21.01.2008

    История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

    реферат , добавлен 07.09.2009

    Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

    дипломная работа , добавлен 20.07.2009

    Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка , добавлен 21.08.2009

    Ознакомление с понятием и основными свойствами определенного интеграла. Представление формулы расчета интегральной суммы для функции y=f(x) на отрезке [а, b]. Равенство нулю интеграла при условии равенства нижнего и верхнего пределов интегрирования.

    презентация , добавлен 18.09.2013

    Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.