Схема электронных блоков квадрокоптера. Схемы сборки квадрокоптеров. Емкость источников питания

Электроника квадрокоптера

ЭКС – электронный контроллер скорости (контроллер оборотов двигателя)

Бесколлекторные двигатели являются мультифазными (как правило — трехфазными), так что не получится запустить их, просто подключив к источнику постоянного тока. Для этого используются специализированные ЭКСы (но не те, что проводились революционерами), а гораздо более технологичные и миниатюрные. ЭКСы генерируют серию (в зависимости от количества фаз) высокочастотных сигналов, которые и заставляют вал мотора вращаться. В зависимости от потребления двигателя, ЭКС должен иметь соответствующую пропускную способность по силе тока.

По сути, ЭКС является контроллером мощности, который преобразует ток источника питания в трехфазный ток для питания бесколлекторных двигателей квадрокоптера. Каждый ЭКС управляется отдельно PPM — сигналами, подобнымиPWM – модуляции.

ПРИМЕЧАНИЕ ПЕРЕВОДЧИКА: PPM (Pulse-position modulation, русск: Фазово — Импульсная модуляция) — распространенный метод кодирования сигналов, передаваемых дистанционно в системах связи с низкими требованиями к помехоустойчивости.

Метод PPM представляет собой последовательность имеющих постоянную длительность импульсов, которые разнесены друг от друга на разные временные периоды. Величина периодов между сигналами и задает кодируемые значения. Группы импульсов объединяются в так называемые фреймы (пакеты).

PWM – модуляция (Pulse- width modulation , русск: Широтно-Импульсная Модуляция, русск. разг: ШИМ) является методом управления средним значением напряжения на нагрузке изменением скважности (соотношения частоты повторения к длительности) импульсов. Таким образом, чем длиннее сигналы, тем большее напряжение получает потребитель.

Частота сигналов может варьироваться в широких пределах, особенно в сложной системе, которую представляет собой квадрокоптер. Система управления для обеспечения необходимого числа оборотов двигателей (а значит, и стабильности полета нашего аппарата) должна уметь обрабатывать команды датчиков с частотой до 200-300 герц, то есть до 300 раз в минуту менять скважность импульсов на каждом из двигателей. Отдельные модели ЭКС могут управляться через систему управления I2C, но их цена пока неоправданно высока.

ПРИМЕЧАНИЕ ПЕРЕВОДЧИКА: I2C (англ: Inter-Integrated Circuit ) последовательная шина данных для связи интегральных схем , использующая SDA и SCL (двунаправленные линии связи). Используется для соединения низкоскоростных переферийных устройств с управляющими модулями. Широко применяется для управления устройствами на базе микроконтроллеров.


Вот он какой, ЭКС…

Одним из важнейших критериев при выборе ЭКСа является величина силы тока, которая может коммутироваться на потребителе, в нашем случае — двигателе. Автор рекомендует использовать ЭКСы, которые могут коммутировать ток не ниже 10 Ампер, а в случае использования мощных двигателей – не ниже величины их пикового потребления. Вторым важнейшим фактором является программная совместимость контроллеров с платой управления. Это значит, что некоторые модели ЭКСов позволяют использовать тайминги (временные периоды) управления, которые выходят за пределы стандартного для моделизма диапазона от 1 до 2 мс. Это предоставляет дополнительные возможности при самостоятельной разработке модулей управления квадрокоптером.

Источник питания

Для питания систем квадрокоптера автор рекомендует LiPo (литий — полимерные) аккумуляторы по двум причинам. Во – первых, они легче по весу, а во – вторых, имеют ток отдачи, как раз подходящий для наших проектов. Возможно использование NiMH (никель — металгидридных) аккумуляторов, но они имеют значительно больший вес, хотя и меньшую стоимость.


Литий — полимерный аккумулятор

Напряжение

LiPo источники питания поставляются как в виде отдельных элементов со стандартным выходным напряжением 3.7 Вольт, так и в виде батарей из более чем 10 отдельных элементов сообщим напряжением 37 Вольт и выше. Популярным выбором для любителей квадровертостроя являются т.н. 3SP1 – батареи, то есть три последовательно соединенные элемента с суммарным выходным напряжением 11.1 Вольт.

Емкость источников питания

Для выбора емкости батареи, вы должны принять во внимание следующие аспекты:

  • Какое потребление у ваших двигателей?
  • В каком полетном времени вы заинтересованы?
  • Какое влияние окажет вес батареи на общий конструкционный вес аппарата?

Хорошим тоном считается, если ваш квадрокоптер при 4 несущих винтах модели EPP1045 и четырех двигателях с Kv рейтингом, равным 1000, при полной мощности двигателей будет держатся в воздухе количеством минут, равное емкости источника питания аппарата в Ампер/Часах. То есть, при емкости батареи квадрокоптера в 4000 мА/Ч, в режиме полной мощности двигателей аппарат должен держатся в воздухе 4 минуты при полезной массе в 1 кг. При учете расхода заряда батарей, это дает 16 минут полета в режиме висения.

Степень разрядки батарей

Еще одним важным фактором является степень разряда C . Вместе с емкостью батареи, эта переменная определяет максимальную силу тока, которая может быть получена с источника питания. Максимальный ток отдачи источника питания рассчитывается по следующей формуле: Мто = емкость батареи x степень разряда.

Пример: батарея имеет степень разряда 30С и емкость в 2000 мА/ч . Максимальный ток разряда, который вы можете получить с указанной батареи, по приведенной выше формуле составляет 60 Ампер . Таким образом, при конструировании вы должны принять во внимание, что максимальный ток потребления всех систем вашего квадрокоптера не должен превышать 60 Ампер .

ИИК – инерционный измерительный комплекс

ИИК, как правило, представляет собой комбинацию 3-координатного акселерометра с 3-координатным гироскопическим модулем, формируя систему датчиков с 6 степенями свободы. Для увеличения курсовой устойчивости, указанную систему иногда дополняют 3-координатным магнитометром, в результате чего система получает в общей сложности 9 степеней свободы.

ПРИМЕЧАНИЕ ПЕРЕВОДЧИКА: Магнитометр (цифровой компас) нужен для ориентации по сторонам света, чтобы узнать, куда идти с какой стороны от нашего аппарата расположен север.

Принцип действия ИИК

Акселерометр (датчик ускорения), предназначен для измерения разности ускорения аппарата и гравитационной составляющей. Так как акселерометр имеет три оси измерения, мы можем использовать его для определения текущей ориентации нашего квадрокоптера.


ИИК с 6 степенями свободы

Гироскопический датчик применяется для измерения угловой скорости, то есть скорости вращения квадрокоптера вокруг каждой из трех осей.

Что будет, если в конструкции мы используем только акселерометры?

В случае использования в нашем квадрокоптере исключительно датчиков ускорения, мы сможем определять ориентацию аппарата с привязкой к поверхности земли. Однако, акселерометр является очень чувствительным и порой неточным датчиком, и из-за вибраций от двигателей, может дать неверные показания. Разумеется, это приведет к потере ориентации. Для решения этой проблемы используются гироскопические датчики. В результате обработки показаний датчика ускорения и гироскопов, мы можем учесть помехи от вибрации при определении реального положения.

Инерционный датчик

Что будет, если в конструкции мы используем только гироскопы?


А вот гироскопический датчик

Если гироскопический датчи к предоставляет нам информацию о поворотах аппарата, почему бы не использовать в конструкции только их?

Гироскопы имеют тенденцию накопления курсовой ошибки. Это приводит к тому, что во время вращения, гироскопический датчик точно показывает угловую скорость, но после остановки не обязательно обнуляет свои показания. Таким образом, при использовании исключительно гироскопических датчиков, вы довольно быстро заметете, что их показания медленно изменяются (дрейфуют) даже после остановки вращения. По этому, для точной ориентации вашего квадрокоптера в пространстве, вам необходимо использовать два типа датчиков.

Акселерометр не может фиксировать рысканья по курсу так же, как изменения углов крена и тангажа. Для этого в конструкцию квадрокоптеров иногда вводят магнитометр.

Магнитометр измеряет направление и величину магнитного поля. Он в состоянии определить направление движения нашего аппарата и направление на Северный и Южный полюсы. Угол отклонения от направления на магнитный полюс Земли с учетом угловых скоростей поворотов по горизонту, полученных от гироскопического датчика, используется для вычисления стабильного курсового угла.

Выбор ИИК

Несмотря на то, что на рынке предоставлены все три типа датчиков, автор рекомендует приобрести специализированные наборы, где датчики с 6-ю или даже 9-ю степенями свободы собраны на одной плате.

Плата датчиков передает показания центральному вычислительному блоку через I2C или в аналоговом виде. Цифровые системы передачи данных более удобны для разработчика и конструктора, однако, значительно дороже аналоговых.

Продаются даже полные ИИК – комплексы, в которые входит отдельный вычислительный блок. Как правило, он управляется 8-битным микроконтроллером, запрограммированным на обработку показаний датчиков рысканья, крена и тангажа. Результаты вычислении передаются центральному процессору в аналоговом виде или через I2C.

Выбор ИИК непосредственно определяет вычислительный блок. Который вы сможете использовать. Так что, покупая ИИК, прочитайте инструкцию к вашей системе управления. Некоторые центральные вычислительные модули имеют встроенные сенсоры.

Вот примеры ИИК, которые можно приобрести через Интернет:

А вот ИИК с системой обработки показаний датчиков:

Система управления полетом (центральный вычислительный модуль)

В процессе создания квадрокоптера вы можете приобрести специализированный контроллер, либо собрать его самостоятельно из отдельных компонентов. Некоторые из таких контроллеров даже оборудованы встроенными сенсорами, в то время как другие требуют приобретения специальных плат с датчиками.

AeroQuad MEGA Shield The AeroQuad board является платой расширения для микроконтроллеров на базе Arduino , и требует дополнительно платы Sparkfun 9 DOF , которая также продается в формате платы расширения (шилд).

Плата ArduPilot , так же как и, построена на базе микроконтроллера ATMEGA328. Подобно AeroQuad, этот модуль не оборудован собственными сенсорами и для получения радости полета вам необходимо приобрести плату расширения ArduIMU.

ЦВМ OpenPilot – еще более продвинутая система управления квадрокоптером, построенная на базе процессора ARM Cortex-M3 с тактовой частотой 72 мегагерца. Плата имеет встроенный акселерометр и гироскопический датчик. Отдельно необходимо отметить программное обеспечение, которое идет в комплекте с платой. Оно позволяет откалибровать датчики, и, при наличии GPS – модуля, задавать маршрутные точки для полета вашего квадрокоптера.

Центральный вычислительный модуль своими руками

Автор утверждает, что при наличии некоторых навыком и прямых рук , любой энтузиаст может изготовить ЦВМ квадрокоптера своими руками . Например, с использованием микроконтроллера Ардуино. В то же время, эти ценные навыки автор обещает предоставить в будущем.

Система радиоуправления

Квадрокоптеры могут управляться разными способами, но наиболее распространенным, является управление по радио, в режимах Темп (аэробатика) и Автостабилизация. Разница состоит в способе интерпретации контрольной системой квадрокоптера текущего положения аппарата и команд, полученных с пульта управления.

В режиме аэробатики для управления квадрокоптером используются только показания гироскопического датчика. Пульт управления используются для контроля тягой двигателей и крена по всем трем осям. Однако, если вы бросите управление квадрокоптером, его автоматическая стабилизация по горизонту проведена не будет. Эта особенность полезна при аэробатике для небольшого доворота квадрокоптера, после чего он не совершит автоматического компенсирующего маневра.

Разумеется, режим аэробатики для начинающих может оказаться излишне сложным и автор рекомендует начать с режима Автостабилизация. Для поддержания ориентации квадрокоптера в этом режиме используются все имеющиеся в наличии сенсоры. Для поддержания баланса, будет осуществляться постоянное и симметричное управление тягой каждого двигателя. Вы же, будете управлять курсом и движением квадрокоптера по любой оси с использованием джойстиков пульта управления. Например, для движения вперед, вам достаточно будет передвинуть вперед один из джойстиков для изменения угла тангажа. После того, как джойстик вернется в нулевую позицию, квадрокоптер автоматически выправит крен и стабилизируется относительно поверхности земли.

Дополнительные компоненты

После покупки все необходимых частей, наличия все еще живого квадрокоптера и желания продолжать эту бодягу, вы можете попробовать использовать дополнительные компоненты, такие, например, как GPS – модуль, ультразвуковой датчик, барометр и др. Все это может повысить летные характеристики и удобство использования вашим квадрокоптером.

GPS при помощи спутников выдает точную информацию о месте нахождения вашего квадрокоптера. Это информация может использоваться для расчета пройденного пути и выяснения маршрута движения. Особенно полезной данная функция может быть для полностью автономных квадрокоптеров, которым необходимо учитывать текущую позицию для выбора дальнейшего направления движения.

Ультразвуковой датчик измеряет дистанцию до земли, то есть текущую высоту полета. Это весьма полезно при полете на заранее заданной высоте без контроля пилота. Как правило, ультразвуковые датчики действуют в диапазоне дистанций от 20 см. до 7 метров.

ПРИМЕЧАНИЕ ПЕРЕВОДЧИКА: также используются лазерные датчики расстояния (ЛИДАР), наиболее доступные из которых работают в диапазоне от 3 см. до 5 метров.

Если же вы решили забраться повыше – вам необходим барометр. Этот датчик измеряет влажность и давление воздуха в зависимости от высоты полета. Если же квадрокоптер находится на малой высоте поблизости от земли (где изменение этих фактора не так сильно выражено), барометр теряет свою эффективность.

Заключение

Автор надеется, что ознакомление с его статьей поможет читателям определится с назначением и особенностями функционирования каждой из частей квадрокоптера и поможет выбрать необходимые компоненты для его постройки.


Страница 3 из 4

Электроника квадрокоптера

Вот пример комплектации квадрокоптера из пластиковых труб электроникой:

4 мотора D2822/14 1450kv
4 регулятора - Turnigy Multistar 30 Amp Multi-rotor Brushless ESC 2-4S
Винты - такие и такие , последние – правого вращения.
Разъем - 3.5 мм это силовой разветвитель для регуляторов Multistar (ХТ60 на 4 X 3.5мм)
Мозги квадрокоптера - MultiWii NanoWii ATmega32U4 , хоть она чуть и подороже других, но, зато позволяет подсоединяться к компьютеру по usb.
Аккумулятор - Nano-Tech 2200 30C
Зарядное устройство - HobbyKing Variable 6S 50W 5A , не дорогое и прекрасно работает.

Еще понадобится передатчик с приемником для управления квадрокоптером, рекомендую или , впрочем, подойдет даже - все зависит от вашего желания и финансовых возможностей.

Плата управления квадрокоптером - его мозги, тоже может быть выбрана более дешевая, например такая , однако, не стоит гнаться за дешевизной там, где находится "сердце полетов".

Регуляторы стоит брать оптимизированные под квадрик, можно полазить по форумам и найти те, которые перепрошиваются и под которые есть готовая мультикоптерная прошивка, но я, к примеру, не готов заниматься перепрошивкой регулторов - там придется использовать микропаяльник для того, что бы прокинуть провода от программатора к чипу регулятора оборотов бесколлекторного двигателя.

Еще потребуется программатор для мозгов квадрокоптера - тут выбираем тот, которые поддерживает программирование выбранных мозгов. Впрочем, указанный MultiWii NanoWii ATmega32U4 имеет USB порт и на программаторе можно сократить расходы.

Электронику защищают с помощью засовывания ее в коробку - самый простой вариант, это использование бокса от CD/DVD дисков, как на фотографии выше. Можно использовать и бокс для продуктов - они бывают разного размера, от совсем мелких, до весьма больших. Главное - крышку расположить под платой электроники квадрокоптера, а самим боксом закрывать сверху.

Наверное, не стоит лишний раз говорить о том, насколько популярны сейчас квадрокоптеры. И вы, скорее всего, знаете, сколько они стоят, и уже забросили думать об этом. В нашей статье вы узнаете, как сделать квадрокоптер своими руками в домашних условиях. Сразу предупреждаем, что дело это ответственное и непростое, но по итогу у вас будет бесценный опыт и заветный девайс по смешной цене.

Есть несколько способов собрать квадрокоптер своими силами:



Как собрать квадрокоптер своими руками

Предупреждаем, что инструкция обобщена и что могут быть различия в паре моментов. Мы расскажем основное по поводу сборки и выбора деталей.

Какие нужны детали

  • Рама и её составляющие. Главное в коптере – несущая часть. Если рама будет легче, то меньше будет уходить питания. Но учтите — лёгкие рамы стоят дороже. Прочность не так важна, если вы не планируете ставить на коптер камеру потяжелее. Рамы бывают трёх типов: четырёхлучевые, шестилучевые и восьмилучевые (по одному мотору на каждый луч).


Особенности выбора комплектующих

  • Моторы. Китайские интернет-магазины обычно хитрят и завышают характеристики. Поэтому для надёжности стоит купить моторы мощнее. Также это даст возможность поднимать более тяжёлую камеру. Также существует две разновидности моторов для квадрокоптера — это коллекторные и бесколлекторные
  • Пропеллеры. Их цена зависит от цели вашего коптера. Если в ваши планы не входят более сложные «полёты» — пластиковых пропеллеров будет достаточно. Если же планируете аэрофотосъёмку – придётся брать композитные материалы. Чем дороже пропеллеры, тем они крепче и меньше уйдёт времени на балансировку.
  • Пульт, приёмник сигнала. Пульт следует брать вместе с приёмником. В таком случае приёмник будет принимать сигнал, посылаемый с пульта. Нормальные пульты, опять-таки, стоят от тысячи рублей и выше – у них радиус действия выше. Сами же пульты могут иметь кучу ненужных переключателей, которые будут вас путать – такие экземпляры лучше не брать.
  • Регуляторы оборотов и батарея. Советуем брать сразу комплект двигателей с контроллерами. Можно обойтись и без этого, но тогда настраивать мощность придётся самим. Батарею следует покупать по мощнее, особенно, если хотите ставить более тяжёлую камеру.
  • Контроллер. Контроллеры бывают двух типов. Универсальный удобен тем, что работает на дронах любой сборки, этому способствуют датчики и многофункциональность. Недостатком является цена контроллера – от 17 тысяч рублей. Также его придётся настраивать через специальный софт, написанный под конкретную модель. Специализированный контроллер уже имеет необходимые настройки под конкретный тип коптера.
  • Камера. Выбор камеры для коптера – дело непростое. Советуем поставить камеру типа GoPro или аналоги от китайских фирм – их качество не сильно разнится. Главную роль играет вес и угол обзора, о последнем расскажем чуть ниже. Чем массивней камера, тем сложнее будет её от центровать. Вы можете рассчитать положение камеры по формуле L= 2 * tg (A /2) х D , (L – область обзора, A – угол, D – расстояние до пропеллеров).

Аналоги камеры GoPro

Экшн-камера Xiaomi Yi

Цена на AliExpress: US $49.99 — 109.99

Технические характеристики:
  • Сенсор: CMOS 1/2,3″ 16 мегапикселей;
  • Объектив: f/2.8, угол обзора 155 градусов;
  • Видео: 1920×1080, 60fps;
  • Фото: 4608×3456;
  • Вес: 72 грамма;
  • Time Lapse: есть;
  • Встроенный экран: нет;
  • Память: карта памяти microSD.
SJCAM SJ5000X 2K

Цена на AliExpress: $126.58

Технические характеристики:

  • Сенсор: CMOS 12 мегапикселей;
  • Объектив: f/2.8, угол обзора 170 градусов;
  • Видео: 2560×1440, 30fps;
  • Фото: 4032×3024;
  • Вес: 74 грамма;
  • Time Lapse: есть;
  • Встроенный экран: есть;
  • Память: карта памяти microSD.

О деталях из Китая

Конечно, не стоит недооценивать китайских производителей, но и расхваливать тоже не нужно. Завышенная характеристика их товаров – обычное дело. Брать можно, но только не дешёвые детали, иначе придётся делать всё заново.

Инструкция по сборке

Наверняка, вы прочитали эту статью и взяли раму с платой распределения. Но если вы это не сделали – не беда, просто подключите провода к модулю управления.

Возьмём, к примеру, коптер, собранный из таких комплектующих:

  • Основа (каркас) – Diatone Q450 Quad 450 V3 PCB Quadcopter Frame Kit 450
  • 4 мотора DYS D2822-14 1450KV Brushless Motor.
  • Регулятор оборотов DYS 30A 2-4S Brushless Speed Controller ESC Simonk Firmware
  • Пропеллеры DYS E-Prop 8×6 8060 SF ABS Slow Fly Propeller Blade For RC Airplane
  • Модуль управления 1.5 kk21evo
  • АКБ, тип: литий-полимер — Turnigy nano-tech 2200mah 4S ~90C Lipo Pack
  • Зарядное устройство Hobby King Variable6S 50W 5A
  • Аккумуляторный коннектор XT60 Male Plug 12AWG 10cm With Wire
  • Коннекторы 20 Pairs 3.5мм Bullet Connector Banana Plug For RC Battery / Motor
  • Пульт управления Spektrum DX6 V2 with AR610 Receiver (с приёмником и передатчиком)

Всё это обойдётся где-то в 20 тысяч рублей

Этапы сборки квадрокоптера

Раскладываем всё это добро по столу и приступаем.

  1. Приблизительно прикидываем нужную длину проводов контроллера, добавляем небольшой запас на всякий случай, и обрезаем их до необходимой длины.
  2. Коннекторы припаиваем к выходам регуляторов для упрощения подключения моторов.
  3. Припаиваем регуляторы оборотов к плате разводки.
  4. Припаиваем коннектор АКБ тоже к плате разводки.
  5. Аккуратно прикручиваем моторы на лучи дрона. При установке бережём резьбу.
  6. Припаиваем коннекторы двигателей, если их нет.
  7. Прикручиваем лучи с моторами к плате.
  8. Крепим регуляторы к лучам коптера. Удобней всего это делать пластмассовыми хомутами.
  9. Включаем провода регуляторов к движкам в случайном порядке. Если понадобится, потом изменим порядок.
  10. Закрепляем на корпусе модуль управления (предварительно сфотографировав тыльную сторону, потом поймёте, для чего). Крепим хоть на жвачку, но рекомендую для начала применить мягкую двухстороннюю липкую ленту.
  11. Подключаем регуляторы оборотов к контроллеру. В порты, отмеченные знаками «плюс»-«минус»-«пусто», как правило, подключаем белым проводом к экрану.
  12. Оставшейся липкой лентой закрепляем приёмник поближе к блоку управления, и подключаем необходимые каналы к соответствующим портам. Применяем документацию данного приёмника и снимок внешнего края платы, дабы понять, какая стопка проводов за что отвечает.
  13. Подключаем питание прибора от батареи, сквозь коннектор.
  14. Вы молодец! Вы собрали свой первый дрон.

Установка и настройка оборудования

Теперь вам осталось его настроить, чтобы он не разбился в первый день полёта.

  1. Запускаем моторы (здесь по-всякому бывает, штудируйте документацию)
  2. Добавляем газ и смотрим, в какую сторону крутятся пропеллеры. Они обязаны вертеться так, как написано в схеме, что прилагается к контроллеру. По-другому управление станет инвертироваться. В случае, если что-нибудь пошло не так — переворачиваем коннектор, объединяющий движок и контроллер.
  3. Если всё вертится верно – прикручиваем верхнюю часть рамы. Не старайтесь втолкать её на место. В случае, если та встала туго — что-то идёт не так. Ослабляем нижние винтики, впоследствии установки затягиваем всё постепенно.
  4. Закрепляем блок с батареями.
  5. Монтируем адаптеры для пропеллеров на двигатели.
  6. Ставим пропеллеры, беря во внимание сторону вращения моторов. Приподнятый элемент лопасти обязан глядеть в сторону вращения.
  7. Есть! Ваш квадрокоптер готов к первому полёту.

Мы с вами рассмотрели простой пример сборки квадрокоптера , который не требует больших затрат и усилий в плане сборки. Соответственно, если вы решите поднимать на дроне что-нибудь потяжелее (навигатор, более тяжёлые средства съёмки и т.п.) – конструкцию придётся доработать и усилить. Тем не менее, вы уже получили первый опыт сборки подобных конструкций. Дальше вам будет проще понимать принцип работы коптера и знать, как его в дальнейшем доработать.

Почитав на хабре статьи про самодельные квадрокоптеры и после того как я увидел видео снятое с AR.Drone в планах на будущее появилась идея сделать самодельный FPV квадрокоптер, AR.Drone не устраивал ценой в 350$ примерно(я тогда еще не знал что свой получится куда дороже), тем что радиус действия небольшой, нестабильностью вне помещений,и то что он не open source и я не могу влиять на алгоритм его работы.

С тех пор прошел примерно год, за это время я практически на занимался ничем связанным с Arduino и прочей электроникой, хотя понемногу покупал разные электронные штуки интересные.

И вот буквально недавно оказалось что один из моих знакомых решил собирать квадрокоптер, и я решил что пора и мне.

Требования к квадрокоптеру: FPV(first person view(вид от первого лица)) то есть управление с земли не смотря на модель, а смотря только на экран, fail safe - в случае потери сигнала от пульта нужно чтоб он не падал комом, а спокойно сел, или летел к месту взлета. GPS - достаточно интересно запрограммировать какую-нибудь миссию для него, и смотреть за выполнением. Время полета на одной зарядке > 10 минут. Дальность действия примерно километр.

Список необходимого

GoPro Hero3

GoPro у меня уже была(использовал в качестве ) так что не пришлось тратиться.
ЦЕНА: 300$
Купить GoPro Hero3

Turnigy 9X

Эта легендарная(своей дешевизной, хорошим качеством и функционалом для таких денег) аппаратура радиоуправления у меня тоже была куплена заранее, но я ей еще не пользовался, лежала пылилась.
Она поставляется с ресивером и трансмиттером или без них, у меня с ними, но для нашего квадрокоптера нужны будут другие(с fail safe), так что можно купить урезанный вариант, хотя я не жалею о покупке полной версии, т.к. вставить другой приемник сюда не сложно, а цена различается всего на 4$.
Питается она от 12в, которые можно обеспечить 8-ю пальчиковыми батарейками, но лучше использовать LiPo аккумулятор, я немного прогадал с размерами, и мой аккумулятор приходится крепить двусторонним скотчем, но внизу я даю ссылку на аккумулятор который отлично впишется в батарейный отсек. Нужно следить за полярностью (минус слева, плюс по центру) т.к. можно не туда воткнуть и спалить аппу.
По умолчанию она идет без подсветки экрана, поэтому лучше сразу докупать подсветку за 5$.
И прошивка с которой она поставляется оставляет желать лучшего(я сам не в курсе, но очень многие прошиваются на прошивку ER9x, которая проще в понимании и более функциональна) я тоже буду прошивать, даже не попользовавшись стандартной прошивкой, и для этого нужен программатор. Цена: 54+5(подсветка)+10(LiPo)+4(программатор)+24(доставка)=97$
Купить Turnigy 9X
Купить Turnigy 9X (без ресивера и трансмиттера)
Купить подстветку
Купить LiPo
Купить программатор

FrSky DJT 2.4Ghz Combo Pack for JR w/ Telemetry Module & V8FR-II RX

Приемник и передатчик для Turnigy 9x с fail safe (его еще не купил, но надо будет для того чтоб уверенно отлетать и не бояться потери сигнала)
ЦЕНА: 40+6(доставка)=46$
Купить FrSky DJT 2.4Ghz Combo Pack for JR w/ Telemetry Module & V8FR-II RX

LiPo 2200mAh 3S 25C

Аккумулятор который будет стоять в квадрокоптере(еще не купил, закажу вместе с FrSky)
ЦЕНА: 10,68$ + доставка
Купить LiPo 2200mAh 3S

Рама RCT Spider FPV Quadcopter Frame W/ Landing gear

Раму можно конечно сделать самому, но т.к. они не сильно дорогие, и внешне смотрятся очень хорошо, я решил купить. Выбор пал именно на эту т.к. в ней вроде достаточно места для всего что запланировано, и еще останется на будущие доделки, к ней удобно крепить GoPro, и по моему лучи и лопасти не будут попадать в кадр, или будут но минимально.
ЦЕНА: 29$
Купить раму

Пропеллеры 12 Pairs Carbon Reinforced 10x4.5" Counter Rotating Propellers

Пропеллеры покупал просто дешевые и подходящие по размеру(в инфо к раме написано 9~12" propeller) к тому же тут есть переходники под разные моторы.
ЦЕНА: 27$
Купить пропеллеры

Моторы 2830/11 1000KV Outrunner Brushless Motor

В моторах особо не разбираюсь, смотрел чтоб к раме подходили (в инфо по раме сказано 28, 35 series motor), такие же моторы купил мой знакомый. Они были разной мощности от 750KV до 1300KV, решил взять середину. ЦЕНА: 11x4=44$
Купить моторы

Контроллеры моторов SK-30A SimonK Firmware Multicopter Speed Controller ESC 30A

Контроллеры такие купил мой знакомый и я тоже их выбрал, чтоб в случае чего вдвоем разбирались решали проблемы. Да и на хабре кто-то хвалил их.
ЦЕНА: 12,5x4=50$
Купить контроллеры моторов

Кабель для контроллеров моторов JST to 4 X 2mm Bullet Multistar ESC Quadcopter Power Breakout Cable

Просто для того чтоб не паять и выглядело симпатично.
ЦЕНА: 2$
Купить кабель для контроллеров моторов

Провода 18AWG Silicon Wire Red (1Meter), 18AWG Silicon Wire Black (1Meter)

Не знаю где в Беларуси можно купить провода нормальные, поэтому на всякий случай заказал красный и черный по 2 метра.
ЦЕНА: 1*2+1*2=4$
Купить красный провод
Купить черный провод

200pcs 10cm 2.54mm 1pin Male to Female jumper

Для подключения датчиков и приемника радиосигнала может пригодиться
ЦЕНА: 10$
Купить Male to Female jumper

20 Pairs 2 mm Bullet Banana Plug Connector

Для подключения аккумулятора и моторов могут пригодиться
ЦЕНА: 3,5$
Купить 2 mm Bullet Banana Plug Connector

Полетный контроллер AIOP V2.0 ALL IN ONE PRO Flight Controller

Полетный контроллер покупал такой же как и знакомый, т.к. цена и функционал устраивают. А решать проблемы проще вместе будет.
Планируется ставить на него MultiWii
ЦЕНА: 49$
Купить AIOP V2.0

AIOPIO Board (Input / Output module)

Не знаю что это особо, но т.к. цена не большая и может быть эта штука мне пригодится решил взять. Подозреваю что тут выведены пины дополнительные на которые можно цеплять еще датчики и прочее. И вроде телеметрию на пульт можно будет передавать блягодяря ей и FrSky.
ЦЕНА: 4$
Купить AIOPIO Board

u-Blox CN-06 GPS Receiver V3.0

GPS приемник который поддерживается MultiWii
ЦЕНА: 30$
Купить u-Blox CN-06

Подстилки под платы Gyro / Flight Controller Mounting Pad (10pcs/bag)

Что то типа двустороннего скотча который еще немного вибрации сглаживает.
ЦЕНА: 1$
Купить Flight Controller Mounting Pad

7A UBEC

Т.к. для AIOP нужны 5v а моторы у нас 12 вольтовые, нужно понизить напряжение от 3s аккумулятора до 5 вольт(тот что я купил возвращает 5,25) т.к.

Беспилотные летательные аппараты (дроны) – это высокотехнологичная дорогостоящая техника. Однако вполне доступными видятся «беспилотники» любительского уровня исполнения. Не случайно последние годы быстро набирают популярность среди обывателей небольшие дроны, в том числе собранные своими руками. Новая, так называемая технология FPV (First Person View) – вид от первого лица, даёт уникальный опыт полёта каждому желающему. Радиоуправляемый авиамоделизм всегда имел спрос молодёжного социума. Появление дронов лишь подстегнуло этот спрос, легко удовлетворяемый, если купить готовую летающую машину, либо собрать дрон собственными руками.

Квадрокоптер (дрон) — конструктивное исполнение беспилотного летательного аппарата, принадлежащего к числу наиболее популярных проектов авиамоделизма.

Самый простой способ обзавестись БПЛА – просто взять и купить квадрокоптер (дрон) , благо рынок (включая сеть Интернет) свободно предоставляет такую возможность.

Однако для большего интереса и с целью лучшего понимания – что такое дрон, практичнее и экономичнее собрать квадрокоптер своими руками (DIY – Do It Yourself), к примеру, из набора готовых деталей. Более серьёзный вариант – сборка квадрокоптера (дрона) с нуля – используя минимум готовых компонентов.

Что потребуется для сборки квадрокоптера (дрона)

Прежде чем начинать сборку беспилотника собственноручно, потребуется определиться с компонентами для создания квадрокоптера (дрона). Поэтому рассмотрим список базовых компонентов, составляющих (дрона):

Рама квадрокоптера

Раму дрона (квадрокоптера) допускается строить, используя разные материалы:

  • металлические,
  • пластиковые,
  • деревянные.

Если выбор пал на деревянную раму дрона (как самую простую с точки зрения технологии), понадобится деревянная доска толщиной около 2,5-3,0 см., длиной 60-70 см.

Доска разрезается таким образом, чтобы получились две планки длиной 60 см и шириной 3 см. Эти две планки — структура будущего квадранта квадрокоптера.

Структура рамы дрона выстраивается простым пересечением двух деревянных планок под фрейм-фактор «X». Полученную раму усиливают прямоугольной деталью – сшивкой, в центральной части. Размер прямоугольника составляет 6 × 15 см, толщина 2 мм. Материал тоже дерево.

Классическая конфигурация рамы квадрокоптера (дрона), которая применяется в большинстве случаев сборки своими руками. Показан вариант с установленными двигателями и контроллером

Не исключаются другие размеры рамы квадрокоптера (дрона), отличные от заявленных, но не следует забывать о соблюдении пропорций. Соединение частей рамы обычно выполняется гвоздями и клеем.

Вместо дерева допускается применить металл или пластик тех же размеров. Однако способы соединения планок будут уже иными.

Ниже список готовых карбоновых рам квадрокоптеров (дронов), имеющихся в продаже на рынке:

  • LHI 220-RX FPV
  • Readytosky FPV
  • iFlight XL5
  • RipaFire F450 4-Axis
  • Usmile X style
  • Readytosky S500

Двигатели, модули ESC, пропеллеры

Под изготовление классического квадрокоптера (дрона) необходимо иметь 4 двигателя. Соответственно, если задуман проект октокоптера, потребуется уже восемь двигателей.


Один из вариантов изготовления пропеллеров моторов квадрокоптера (дрона). Материалом выбран жёсткий пластик, учитывая малые габариты конструкции

На русском языке модуль ESC (Electronic Speed Controllers) квадрокоптера называют – контроллер скорости. Это не менее важная часть беспилотного летательного аппарата, чем электромотор.

Модули ESC отвечают за корректную передачу мощности моторам дрона. Количество модулей квадрокоптера соответствует числу электромоторов.

  • Emax RS2205 2600KV Brushless Motors
  • DLFPV DL2205 2300KV Brushless Motors
  • Gemfan GT2205 2650KV Brushless Motors
  • HOBBYMATE Quadcopter Motors Combo
  • 35A ESC BlHeli32 32bit DSHOT1200
  • Thriverline Sunrise ESC 20A BLHeli-S

Пропеллеры можно купить металлические 9-дюймовые. Эти изделия по доступной цене свободно приобретаются на рынке.

Металлические конструкции прочны, не поддаются изгибу при высоких нагрузках в процессе полёта. Однако для более высокой производительности винтов – лучший вариант карбоновые пропеллеры. Например, эти:

  • BTG Quick Release Carbon Fiber Reinforced Propellers
  • Performance 1245 Black Propellers MR Series
  • YooTek 4 Pairs Foldable Quick Release Propellers
  • Myshine 9450 Self-tightening Propeller Props
  • Jrelecs 2 Pairs Carbon Fiber Propellers

Электроника и модуль питания

Набор электроники дронов (квадрокоптеров) традиционно состоит из контроллера полёта и беспроводной системы управления. Сюда же можно отнести и модуль питания, так как большинство питающих модулей наделяются электронной системой мониторинга АКБ.

Состояние заряда аккумулятора – важный момент полёта. Трудно представить, что станется с аппаратом, если АКБ разрядится, к примеру, во время полёта над водоёмом.

Контроллер полёта поддерживает стабильность полёта квадрокоптера, путём обработки данных относительно направления и силы ветра, а также многих других параметров.


Контроллер полёта на чипе STM32F103C8T6: 1, 2 — пищалка (+; -); 3 — поток; 4 — RCCI; 5 — корпус; 6 — 5 вольт; 7 — батарея; 8, 9 — UART TX, RX; 10 — индикатор полосы; 11, 12, 13, 14 — моторы; 15 — PPM

Контроллер, как правило, оснащается так называемой «прошивкой» — микросхемой памяти, куда записываются базовые сведения для чипа, подобного микроконтроллеру фирмы AVR.

Контроллер полёта можно купить в готовом варианте, но не исключается также сборка схемы своими руками. Правда, для второго варианта необходимо иметь навыки электронщика и соответствующие . Поэтому проще всё-таки воспользоваться готовыми решениями. Например, одним из следующих:

ArduPilot – качественный контроллер (дорогостоящий), предназначенный для летательных аппаратов беспилотного управления. Прошивка отличается наличием полностью автоматизированных режимов полёта. Система обеспечивает высокие технические характеристики.

OpenPilot CC3D – система на базе Digital Motion Processor, наделённая целым семейством датчиков организации полёта. Включает в состав трёхкоординатный акселерометр и гироскоп. Проект достаточно легко настраивается и устанавливается. Имеется руководство пользователя.

NAZE32 – тоже достаточно гибкая и мощная система, но видится несколько усложнённой в плане настройки. Оснащается продвинутой программой прошивки.

KK2 – одно из популярных решений, которое часто выбирают начинающие, так как контроллер относительно недорогой и оснащается ЖК-дисплеем. Основой схемы является микроконтроллер AVR одной из последних модификаций. Схемой предусматривается подключение датчиков MPU6050. Однако настройка только ручная.

Беспроводная система дистанционного управления состоит из передатчика и приёмника радиосигналов. Посредством системы ДУ осуществляется не только управление полётом, но также управление положением , установленной на дроне.


Пульт управления дроном (квадрокоптером) в классической вариации передатчика радиосигнала с возможностью мониторинга через ЖК-дисплей

Здесь, как правило, используются исключительно готовые решения. Например, любая из систем ДУ в списке ниже:

  • Futaba 10JH 10-Channel Heli T-FHSS Computer Radio System
  • Turnigy 9xr PRO Radio Control System
  • Spektrum DX8 Radio Transmitter
  • YKS FlySky FS-i6 2.4GHz 6 Channels Radio Control System

Сборка дрона (квадрокоптера) своими руками

На созданной раме устанавливаются электродвигатели. Возможно, придётся рассчитать местоположения моторов и просверлить в раме отверстия под крепление, если нет иных вариантов.


Примерно по такой механической схеме рекомендуется закреплять электромоторы на раме квадрокоптера (дрона). Правда, многое в креплении зависит от материала рамы

Затем монтируются контроллеры скорости. Традиционно эти модули устанавливаются на нижней плоскости рамы. Контроллеры скорости через ленточные кабели соединяются непосредственно с двигателями.

Далее на раму добавляется посадочный модуль – часть конструкции, предназначенная для организации «мягкой» посадки дрона. Исполнение этого конструктивного элемента должно предусматривать смягчение ударов при посадке на твёрдую почву. Конструкции возможны разного плана.

На следующем шаге монтируется контроллер полёта. Месторасположение этого модуля не критично. Главное, чтобы обеспечивалась защита электроники и бесперебойная работа.

Полёта дрона соединяется по прилагаемой схеме к модулю (приёмнику) дистанционного пульта управления и к электронной плате регулировки скорости моторов. Все соединения делаются посредством надёжных разъёмов, а наиболее важные точки «садятся» на оловянную пайку.

В принципе, основная сборка на этом завершается. Но спешить закрывать дрон корпусом не стоит. Необходимо протестировать все системы – датчики и другие компоненты квадрокоптера, используя для этого специальный софт OpenPilot GCS (CC3D и GCS). Правда, релиз программы довольно старый и новыми разработками может не поддерживаться.

После теста собранный аппарат – беспилотный квадрокоптер готов к полёту. В дальнейшем дрон несложно модернизировать — оснастить видеокамерой и прочими устройствами, расширяющими функциональность.