Сколько агрегатных состояний вещества. Агрегатное состояние веществ

Агрегатное состояние вещества

Вещество – реально существующая совокупность частиц, связанных между собой химическими связями и находящихся при определенных условиях в одном из агрегатных состояний. Любое вещество состоит из совокупности очень большого числа частиц: атомов, молекул, ионов, которые могут объединяться между собой в ассоциаты, называемые также агрегатами или кластерами. В зависимости от температуры и поведения частиц в ассоциатах (взаимное расположение частиц, их число и взаимодействие в ассоциате, а также распределение ассоциатов в пространстве и их взаимодействии между собой) вещество может находиться в двух основных агрегатных состояниях – кристаллическом (твердом) или газообразном, и в переходных агрегатных состояниях – аморфном (твердом), жидкокристаллическом, жидком и парообразном. Твердое, жидкокристаллическое и жидкое агрегатные состояния являются конденсированными, а парообразное и газообразное – сильно разряженными.

Фаза – это совокупность однородных микрообластей, характеризующихся одинаковой упорядоченностью и концентрацией частиц и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании фаза характерна только для веществ, находящихся в кристаллическом и газообразном состояниях, т.к. это однородные агрегатные состояния.

Метафаза – это совокупность разнородных микрообластей, отличающихся друг от друга степенью упорядоченности частиц или их концентрацией и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании метафаза характерна только для веществ, находящихся в неоднородных переходных агрегатных состояний. Разные фазы и метафазы могут смешиваться между друг с другом, образуя одно агрегатное состояние, и тогда между ними нет поверхности раздела.

Обычно не разделяют понятия «основное» и «переходное» агрегатные состояния. Понятия «агрегатное состояние», «фаза» и «мезофаза» часто используют как синонимы. Целесообразно рассматривать для состояния веществ пять возможных агрегатных состояний: твердое, жидкокристаллическое, жидкое, парообразное, газообразное. Переход одной фазы в другую фазу называют фазовым переходом первого и второго рода. Фазовые переходы первого рода характеризуются:

Скачкообразным изменением физических величие, описывающих состояние вещества (объем, плотность, вязкость и т.д.);

Определенной температурой, при которой совершается данный фазовый переход

Определенной теплотой, характеризующий данный переход, т.к. рвутся межмолекулярные связи.

Фазовые переходы первого рода наблюдаются при переходе из одного агрегатного состояния в другое агрегатное состояние. Фазовые переходы второго рода наблюдаются при изменении упорядоченности частиц в пределах одного агрегатного состояния, характеризуются:

Постепенное изменение физических свойств вещества;

Изменение упорядоченности частиц вещества под действием градиента внешних полей или при определенной температуры, называемой температурой фазового перехода;

Теплота фазовых переходов второго рода равна и близка к нулю.

Главное различие фазовых переходов первого и второго рода заключается в том, что при переходах первого рода, прежде всего, изменяется энергия частиц системы, а в случае переходов второго рода – упорядоченность частиц системы.

Переход вещества из твердого состояния в жидкое называется плавлением и характеризуется температурой плавления. Переход вещества из жидкого в парообразное состояние называется испарением и характеризуется температурой кипения. Для некоторых веществ с небольшой молекулярной массой и слабым межмолекулярным взаимодействием возможен непосредственный переход из твердого состояния в парообразное, минуя жидкое. Такой переход называется сублимацией. Все перечисленные процессы могут протекать и в обратном направлении: тогда их называют замерзанием, конденсацией, десублимацией.

Вещества, не разлагающиеся при плавлении и кипении, могут находиться в зависимости от температуры и давления во всех четырех агрегатных состояниях.

Твердое состояние

При достаточно низкой температуре практически все вещества находятся в твердом состоянии. В этом состоянии расстояние между частицами вещества сопоставимы с размерами самих частиц, что обеспечивает их сильное взаимодействие и значительное превышение у них потенциальной энергии над кинетической энергией.. Движение частиц твердого вещества ограничено только незначительными колебаниями и вращениями относительно занимаемого положения, а поступательное движение у них отсутствует. Это приводит к внутренней упорядоченности в расположении частиц. Поэтому для твердых тел характерна собственная форма, механическая прочность, постоянный объем (они практически несжимаемы). В зависимости от степени упорядоченности частиц твердые вещества разделяются на кристаллические и аморфные.

Кристаллические вещества характеризуются наличием порядка в расположении всех частиц. Твердая фаза кристаллических веществ состоит из частиц, которые образуют однородную структуру, характеризующуюся строгой повторяемостью одной и той же элементарной ячейки во всех направлениях. Элементарная ячейка кристалла характеризует трехмерную периодичность в расположении частиц, т.е. его кристаллическую решетку. Кристаллические решетки классифицируются в зависимости от типа частиц, составляющих кристалл, и от природы сил притяжения между ними.

Многие кристаллические вещества в зависимости от условий (температура, давление) могут иметь разную кристаллическую структуру. Это явление называется полиморфизмом. Общеизвестные полиморфные модификации углерода: графит, фуллерен, алмаз, карбин.

Аморфные (бесформенные) вещества. Это состояние характерно для полимеров. Длинные молекулы легко изгибаются и переплетаются с другими молекулами, что приводит к нерегулярности в расположении частиц.

Отличие аморфных частиц от кристаллических:

    изотропия – одинаковость физических и химических свойств тела или среды по всем направлениям, т.е. независимость свойств от направления;

    отсутствие фиксированной температуры плавления.

Аморфную структуру имеют стекло, плавленый кварц, многие полимеры. Аморфные вещества менее устойчивы, чем кристаллические, и поэтому любое аморфное тело со временем может перейти в энергетически более устойчивое состояние – кристаллическое.

Жидкое состояние

При повышении температуры энергия тепловых колебаний частиц возрастает, и для каждого вещества имеется температура, начиная с которой энергия тепловых колебаний превышает энергию связей. Частицы могут совершать различные движения, смещаясь относительно друг друга. Они еще остаются в контакте, хотя правильная геометрическая структура частиц нарушается – вещество существует в жидком состоянии. Вследствие подвижности частиц для жидкого состояния характерны броуновское движение, диффузия и летучесть частиц. Важным свойством жидкости является вязкость, которая характеризует межассоциатные силы, препятствующие свободному течению жидкости.

Жидкости занимают промежуточное положение между газообразным и твердым состоянием веществ. Более упорядочная структура, чем газ, но менее чем твердое вещество.

Паро – и газообразное состояния

Паро-газообразное состояние обычно не различают.

Газ – это сильно разряженная однородная система, состоящая из отдельных молекул, далеко отстоящих друг от друга, которую можно рассматривать как единую динамическую фазу.

Пар - это сильно разряженная неоднородная система, представляющая собой смесь молекул и неустойчивых небольших ассоциатов, состоящих из этих молекул.

Молекулярно-кинетическая теория объясняет свойства идеального газа, основываясь на следующих положениях: молекулы совершают непрерывное беспорядочное движение; объем молекул газа пренебрежимо мал по сравнению с межмолекулярными расстояниями; между молекулами газа не действуют силы притяжения или отталкивания; средняя кинетическая энергия молекул газа пропорциональна его абсолютной температуре. Вследствие незначительности сил межмолекулярного взаимодействия и наличия большого свободного объема для газов характерны: высокая скорость теплового движения и молекулярной диффузии, стремление молекул занять как можно больший объем, а также большая сжимаемость.

Изолированная газофазная система характеризуется четырьмя параметрами: давлением, температурой, объемом, количеством вещества. Связь между данными параметрами описывается уравнением состояния идеального газа:

R = 8,31 кДж/моль – универсальная газовая постоянная.

В повседневной практике приходится иметь дело не отдельно с индивидуальными атомами, молекулами и ионами, а с реальными веществами — совокупностью большого количества частиц. В зависимости от характера их взаимодействия различают четыре вида агрегатного состояния: твердое, жидкое, газообразное и плазменное. Вещество может превращаться из одного агрегатного состояния в другое в результате соответствующего фазового перехода.

Пребывание вещества в том или ином агрегатном состоянии обусловлено силами, действующими между частицами, расстоянием между ними и особенностями их движения. Каждое агрегатное состояние характеризуется совокупностью определенных свойств.

Свойства веществ в зависимости от агрегатного состояния:

состояние свойство
газообразное
  1. Способность занимать весь объем и принимать форму сосуда;
  2. Сжимаемость;
  3. Быстрая диффузия в результате хаотического движения молекул;
  4. Значительное превышение кинетической энергии частиц над потенциальной, Е кинетич. > Е потенц.
жидкое
  1. Способность принимать форму той части сосуда, которую занимает вещество;
  2. Невозможность расширяться до заполнения всей емкости;
  3. Небольшая сжимаемость;
  4. Медленная диффузия;
  5. Текучесть;
  6. Соизмеримость потенциальной и кинетической энергии частиц, Е кинетич. ≈ Е потенц.
твердое
  1. Способность сохранять собственные форму и объем;
  2. Очень незначительная сжимаемость (под большим давлением)
  3. Очень медленная диффузия за счет колебательного движения частиц;
  4. Отсутствие текучести;
  5. Значительное превышение потенциальной энергии частиц над кинетической, Е кинетич. <Е потенц.

В соответствии со степенью упорядоченности в системе для каждого агрегатного состояния характерно собственное соотношение между кинетической и потенциальной энергиями частиц. В твердых телах потенциальная преобладает над кинетической, так как частицы занимают определенные положения и только колеблются вокруг них. Для газов наблюдается обратное соотношение между потенциальной и кинетической энергиями, как следствие того, что молекулы газа всегда хаотично движутся, а силы сцепления между ними почти отсутствуют, поэтому газ занимает весь объем. В случае жидкостей кинетическая и потенциальная энергии частиц примерно одинаковы, между частицами действует нежесткая связь, поэтому жидкостям присущи текучесть и постоянный при данной объем.

Когда частицы вещества образуют правильную геометрическую структуру, а энергия связей между ними больше энергии тепловых колебаний, что предотвращает разрушение сложившейся структуры — значит, вещество находится в твердом состоянии. Но начиная с некоторой температуры, энергия тепловых колебаний превышает энергию связей между частицами. При этом частицы, хотя и остаются в контакте, перемещаются друг относительно друга. В результате геометрическая структура нарушается и вещество переходит в жидкое состояние. Если тепловые колебания настолько возрастают, что между частицами практически теряется связь, вещество приобретает газообразное состояние. В «идеальном» газе частицы свободно перемещаются во всех направлениях.

При повышении температуры вещество переходит из упорядоченного состояния (твердое) в неупорядоченный состояние (газообразное) жидкое состояние является промежуточным по упорядоченности частиц.

Четвертым агрегатным состоянием называют плазму — газ, состоящий из смеси нейтральных и ионизированных частиц и электронов. Плазма образуется при сверхвысоких температурах (10 5 -10 7 0 С) за счет значительной энергии столкновения частиц, которые имеют максимальную неупорядоченность движения. Обязательным признаком плазмы, как и других состояний вещества, является ее электронейтральность. Но в результате неупорядоченности движения частиц в плазме могут возникать отдельные заряженные микрозоны, благодаря чему она становится источником электромагнитного излучения. В плазменном состоянии существует вещество на , звездах, других космических объектах, а также при термоядерных процессах.

Каждое агрегатное состояние определяется, прежде всего, интервалом температур и давлений, поэтому для наглядной количественной характеристики используют фазовую диаграмму вещества, которая показывает зависимость агрегатного состояния от давления и температуры.

Диаграмма состояния вещества с кривыми фазовых переходов: 1 — плавления-кристаллизации, 2 — кипения-конденсации, 3 — сублимации-десублимации

Диаграмма состояния состоит из трех основных областей, которые соответствуют кристаллическому, жидкому и газообразному состояниям. Отдельные области разделяются кривыми, отражающие фазовые переходы:

  1. твердого состояния в жидкое и, наоборот, жидкого в твердое (кривая плавления-кристаллизации — пунктирный зеленый график)
  2. жидкого в газообразное и обратного преобразования газа в жидкость (кривая кипения-конденсации — синий график)
  3. твердого состояния в газообразное и газообразного в твердое (кривая сублимации-десублимации — красный график).

Координаты пересечения этих кривых называются тройной точкой, в которой в условиях определенного давления Р=Р в и определенной температуры Т=T в вещество может сосуществовать сразу в трех агрегатных состояниях, причем жидкое и твердое состояние имеют одинаковое давление пара. Координаты Р в и Т в — это единственные значения давления и температуры, при которых могут одновременно сосуществовать все три фазы.

Точке К на фазовой диаграмме состояния отвечает температура Т к — так называемая критическая температура, при которой кинетическая энергия частиц превышает энергию их взаимодействия и поэтому стирается грань разделения между жидкой и газовой фазами, а вещество существует в газообразном состоянии по любым давлением.

Из анализа фазовой диаграммы следует, что при высоком давлении, большем чем в тройной точке (Р в), нагрев твердого вещества заканчивается его плавлением, например, при Р 1 плавления происходит в точке d . Дальнейшее повышение температуры от Т d к Т е приводит к кипению вещества при данном давлении Р 1 . При давлении Р 2 , меньшем, чем давление в тройной точке Р в, нагрев вещества приводит к его переходу непосредственно из кристаллического в газообразное состояние (точка q ), то есть к сублимации. Для большинства веществ давление в тройной точке ниже, чем давление насыщенного пара (Р в

Р насыщ.пара, поэтому при нагревании кристаллов таких веществ они не плавятся, а испаряются, то есть подвергаются сублимации. Например, так ведут себя кристаллы йода или «сухой лед» (твердый СО 2).


Анализ диаграммы состояния вещества

Газообразное состояние

При нормальных условиях (273 К, 101325 Па) в газообразном состоянии могут находиться как простые вещества, молекулы которых состоят из одного (Не, Ne, Ar) или из нескольких несложных атомов (Н 2 , N 2 , O 2), так и сложные вещества с малой молярной массой (СН 4 , HCl, C 2 H 6).

Поскольку кинетическая энергия частиц газа превышает их потенциальную энергию, то молекулы в газообразном состоянии непрерывно хаотически двигаются. Благодаря большим расстояниям между частицами силы межмолекулярного взаимодействия в газах настолько незначительны, что их не хватает для привлечения частиц друг к другу и удержания их вместе. Именно по этой причине газы не имеют собственной формы и характеризуются малой плотностью и высокой способностью к сжатию и к расширению. Поэтому газ постоянно давит на стенки сосуда, в котором он находится, одинаково во всех направлениях.

Для изучения взаимосвязи между важнейшими параметрами газа (давление Р, температура Т, количество вещества n, молярная масса М, масса m) используется простейшая модель газообразного состояния вещества — идеальный газ , которая базируется на следующих допущениях:

  • взаимодействием между частицами газа можно пренебречь;
  • сами частицы являются материальными точками, которые не имеют собственного размера.

Наиболее общим уравнением, описывающим модель идеального газа, считается уравнения Менделеева-Клапейрона для одного моля вещества:

Однако поведение реального газа отличается, как правило, от идеального. Это объясняется, во-первых, тем, что между молекулами реального газа все же действуют незначительные силы взаимного притяжения, которые в определенной степени сжимают газ. С учетом этого общее давление газа возрастает на величину a /V 2 , которая учитывает дополнительное внутреннее давление, обусловленное взаимным притяжением молекул. В результате общее давление газа выражается суммой Р+ а /V 2 . Во-вторых, молекулы реального газа имеют хоть и малый, но вполне определенный объем b , поэтому действительный объем всего газа в пространстве составляет V — b . При подстановке рассмотренных значений в уравнение Менделеева-Клапейрона получаем уравнение состояния реального газа, которое называется уравнением Ван-дер-Ваальса :

где а и b — эмпирические коэффициенты, которые определяются на практике для каждого реального газа. Установлено, что коэффициент a имеет большую величину для газов, которые легко сжижаются (например, СО 2 , NH 3), а коэффициент b — наоборот, тем выше по величине, чем больше размеры имеют молекулы газа (например, газообразные углеводороды).

Уравнение Ван-дер-Ваальса гораздо точнее описывает поведение реального газа, чем уравнения Менделеева-Клапейрона, которое тем не менее, благодаря наглядному физическому смыслу широко используется в практических расчетах. Хотя идеальное состояние газа является предельным, мнимым случаем, однако простота законов, которые ему отвечают, возможность их применения для описания свойств многих газов в условиях низких давлений и высоких температур делает модель идеального газа очень удобной.

Жидкое состояние вещества

Жидкое состояние любого конкретного вещества являются термодинамически устойчивым в определенном интервале температур и давлений, характерных для природы (состава) данного вещества. Верхний температурный предел жидкого состояния — температура кипения, выше которой вещество в условиях устойчивого давления находится в газообразном состоянии. Нижняя граница устойчивого состояния существования жидкости — температура кристаллизации (затвердевания). Температуры кипения и кристаллизации, измеренные при давлении 101,3 кПа, называются нормальными.

Для обычных жидкостей присуща изотропность — единообразие физических свойств во всех направлениях внутри вещества. Иногда для изотропности употребляют и другие термины: инвариантность, симметрия относительно выбора направления.

В формировании взглядов на природу жидкого состояния важное значение имеет представление о критическом состоянии, который был открыт Менделеевым (1860 г.):

Критическое состояние — это равновесное состояние, при котором предел разделения между жидкостью и ее паром исчезает, поскольку жидкость и ее насыщенный пар приобретают одинаковые физические свойства.

В критическом состоянии значение как плотностей, так и удельных объемов жидкости и ее насыщенного пара становятся одинаковыми.

Жидкое состояние вещества является промежуточным между газообразным и твердым. Некоторые свойства приближают жидкое состояние к твердому. Если для твердых веществ характерна жесткая упорядоченность частиц, которая распространяется на расстояние до сотен тысяч межатомных или межмолекулярных радиусов, то в жидком состоянии наблюдается, как правило, не более нескольких десятков упорядоченных частиц. Объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества быстро возникает, и так же быстро снова «размывается» тепловым колебаниям частиц. Вместе с тем общая плотность «упаковки» частиц мало отличается от твердого вещества, поэтому плотность жидкостей не сильно отличается от плотности большинства твердых тел. К тому же способность жидкостей к сжатию почти такая же мала, что и в твердых тел (примерно в 20000 раз меньше, чем у газов).

Структурный анализ подтвердил, что в жидкостях наблюдается так называемый ближний порядок , который означает, что число ближайших «соседей» каждой молекулы и их взаимное расположение примерно одинаковы по всему объему.

Относительно небольшое количество различных по составу частиц, соединенных силами межмолекулярного взаимодействия, называется кластером . Если все частицы в жидкости одинаковы, то такой кластер называется ассоциатом . Именно в кластерах и ассоциатах наблюдается ближний порядок.

Степень упорядоченности в различных жидкостях зависит от температуры. При низких температурах, незначительно превышающих температуру плавления, степень упорядоченности размещения частиц очень большая. С повышением температуры она уменьшается и по мере нагревания свойства жидкости все больше приближаются к свойствам газов, а по достижении критической температуры разница между жидким и газообразным состоянием исчезает.

Близость жидкого состояния к твердому подтверждается значениями стандартных энтальпий испарения DН 0 испарения и плавления DН 0 плавления. Напомним, что величина DН 0 испарения показывает количество теплоты, которая нужна для преобразования 1 моля жидкости в пар при 101,3 кПа; такое же количество теплоты расходуется на конденсацию 1 моля пара в жидкость при тех же условиях (т.е. DН 0 испарения = DН 0 конденсации). Количество теплоты, затрачиваемое на превращение 1 моля твердого вещества в жидкость при 101,3 кПа, называется стандартной энтальпией плавления ; такое же количество теплоты высвобождается при кристаллизации 1 моля жидкости в условиях нормального давления (DН 0 плавления = DН 0 кристаллизации). Известно, что DН 0 испарения << DН 0 плавления, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притяжения, чем переход из жидкого в газообразное состояние.

Однако другие важные свойства жидкостей больше напоминают свойства газов. Так, подобно газам, жидкости могут течь — это свойство называется текучестью . Они могут сопротивляться течению, то есть им присуща вязкость . На эти свойства влияют силы притяжения между молекулами, молекулярная масса жидкого вещества и другие факторы. Вязкость жидкостей примерно в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, но гораздо медленнее, поскольку частицы жидкости упакованы плотнее, чем частицы газа.

Одной из самых интересных свойств жидкого состояния, которая не характерна ни для газов, ни для твердых веществ, является поверхностное натяжение .


Схема поверхностного натяжения жидкости

На молекулу, находящуюся в объеме жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, вследствие чего поверхностные молекулы находятся под действием некоторой результирующей силы, которая направлена ​​внутрь жидкости. По этой причине поверхность жидкости находится в состоянии натяжения. Поверхностное натяжение — это минимальная сила, которая удерживает частицы жидкости внутри и тем самым предотвращает сокращении поверхности жидкости.

Строение и свойства твердых веществ

Большинство известных веществ как природного, так и искусственного происхождения при обычных условиях находятся в твердом состоянии. Из всех известных на сегодня соединений около 95% относятся к твердым веществам, которые приобрели важное значение, поскольку является основой не только конструкционных, но и функциональных материалов.

  • Конструкционные материалы — это твердые вещества или их композиции, которые используются для изготовления орудий труда, предметов быта, и различных других конструкций.
  • Функциональные материалы — это твердые вещества, использование которых обусловлено наличием в них тех или иных полезных свойств.

Например, сталь, алюминий, бетон, керамика принадлежат к конструкционным материалам, а полупроводники, люминофоры — к функциональным.

В твердом состоянии расстояния между частицами вещества маленькие и имеют по величине такой же порядок, что и сами частицы. Энергии взаимодействия между ними достаточно велики, что предотвращает свободное движение частиц — они могут только колебаться относительно определенных равновесных положений, например, вокруг узлов кристаллической решетки. Неспособность частиц к свободному перемещению приводит к одной из самых характерных особенностей твердых веществ — наличие собственной формы и объема. Способность к сжатию у твердых веществ очень незначительна, а плотность высокая и мало зависит от изменения температуры. Все процессы, происходящие в твердом веществе, происходят медленно. Законы стехиометрии для твердых веществ имеют другой и, как правило, более широкий смысл, чем для газообразных и жидких веществ.

Подробное описание твердых веществ слишком объемно для этого материала и поэтому рассматривается в отдельных статьях: , и .

Цели урока:

  • углубить и обобщить знания об агрегатных состояниях вещества, изучить в каких состояниях могут находиться вещества.

Задачи урока:

Обучающие – сформулировать представление о свойствах твёрдых тел, газов, жидкостей.

Развивающие – развитие учащихся навыков речи, анализа, выводы по пройденному и изученному материалу.

Воспитательные – привитие умственного труда, создание всех условий,для повышения интереса к изученному предмету.

Основные термины:

Агрегатное состояние - это состояние вещества, которое характеризуется определёнными качественными свойствами: - способность или неспособность сохранять форму и объём; - наличие или отсутствие ближнего и дальнего порядка; - другими.

Рис.6. Агрегатное состояние вещества при изменении температуры.

Когда вещество из твёрдого состояния переходит в жидкое, то это называется плавлением, обратный процесс – кристаллизацией. При переходе вещества из жидкости в газ, этот процесс называется парообразованием, в жидкость из газа – конденсацией. А переход сразу в газ из твёрдого тела, минуя жидкое – сублимацией, обратный процесс – десублимацией.

1.Кристаллизация; 2. Плавление; 3. Конденсация; 4. Парообразование;

5. Сублимация; 6. Десублимация.

Эти примеры переходов мы постоянно наблюдаем в повседневной жизни. Когда лед плавится, он превращается в воду, а вода в свою очередь испаряется, и образовывается пара. Если рассматривать в обратную сторону то, пар, конденсируясь, начинает переходить снова в воду, а вода в свою очередь, замерзая, становится льдом. Запах любого твёрдого тела – это сублимация. Часть молекул вырывается из тела, при этом образовывается газ, который и даёт запах. Пример обратного процесса – это в зимнее время узоры на стекле, когда пар в воздухе при замерзании оседает на стекле.

На видео показано изменение агрегатных состояний вещества.

Контролирующий блок.

1.После замерзания, вода превратилась в лёд. Изменились, ли при этом молекулы воды?

2.В помещении пользуются медицинским эфиром. И из-за этого обычно им сильно там пахнет. В каком состоянии находится эфир?

3.Что происходит с формой жидкости?

4.Лёд. Это какое состояние воды?

5.Что происходит когда замерзает вода?

Домашнее задание.

Ответить на вопросы:

1.Можно ли на половину объёма сосуда заполнить его газом? Почему?

2.Могут ли быть при комнатной температуре в жидком состоянии: азот и кислород?

3.Могут ли быть при комнатной температуре в газообразном состоянии: железо и ртуть?

4.В морозный зимний день над рекой образовался туман. Какое это состояние вещества?

Мы считаем, что у вещества существует три агрегатных состояния. На самом же деле их как минимум пятнадцать, при этом список этих состояний продолжает расти с каждым днём. Это: аморфное твёрдое, твёрдое, нейтрониум, кварк-глюонная плазма, сильно симметричное вещество, слабо симметричное вещество, фермионный конденсат, конденсат Бозе-Эйнштейна и странное вещество.

Определение

Агрегатные состояния вещества (от латинского aggrego -- присоединяю, связываю) -- это состояния одного и того же вещества твердое, жидкое, газообразное.

При переходе из одного состояния в другое происходит скачкообразное изменение энергии, энтропии, плотности и других характеристик вещества.

Твердые и жидкие тела

Определение

Твердыми телами называются тела, отличающиеся постоянством формы и объема.

В них межмолекулярные расстояния малы и потенциальная энергия молекул сравнима с кинетической. Твёрдые тела делятся на два вида: на кристаллические и аморфные. В состоянии термодинамического равновесия пребывают лишь кристаллические тела. Аморфные же тела по сути представляют метастабильные состояния, которые по своему строению приближаются к неравновесным, медленно кристаллизующимся жидкостям. В аморфном теле идет очень медленный процесс кристаллизации, процесс постепенного перехода вещества в кристаллическую фазу. Отличие кристалла от аморфного твёрдого тела заключается прежде всего в анизотропии его свойств. Свойства кристаллического тела зависят от направления в пространстве. Различного рода процессы, такие как теплопроводность, электропроводность, свет, звук, распространяются в различных направлениях твёрдого тела по-разному. Аморфные же тела (стекло, смолы, пластмассы) изотpопны, как и жидкости. Отличие аморфных тел от жидкостей состоит только в том, что последние текучи, в них невозможны статические деформации сдвига.

Кристаллические тела обладают правильным молекулярным строением. Именно правильному строению кристалла обязана анизотропия его свойств. Правильное расположение атомов кристалла образует так называемую кристаллическую решётку. В различных направлениях расположение атомов в решётке различно, что и ведет к анизотропии. Атомы (или ионы, или целые молекулы) в кристаллической решётке совершают беспорядочное колебательное движение около средних положений, которые и рассматриваются как узлы кристаллической решётки. Чем больше температура, тем больше энергия колебаний, а следовательно, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний находится размер кристалла. Рост амплитуды колебаний ведет к росту размеров тела. Так объясняется тепловое расширение твёрдых тел.

Определение

Жидкими называют тела, которые имеют определенный объем, но не имеют упругости формы.

Жидкости отличаются сильным межмолекулярным взаимодействием и малой сжимаемостью. Жидкость занимает промежуточное положение между твёрдым телом и газом. Жидкости, как и газы, изотpопны. Кроме того, жидкость обладает текучестью. В ней, как и в газах, отсутствуют касательные напряжения (напряжения на сдвиг) тел. Жидкости тяжелы, т.е. их удельные веса сравнимы с удельными весами твёрдых тел. Вблизи температур кристаллизации их теплоемкости и другие тепловые характеристики близки к соответствующим характеристикам твёрдых тел. В жидкостях наблюдается до известной степени правильное расположение атомов, но лишь в малых областях. Здесь атомы тоже совершают колебательное движение возле узлов квазикpисталлической ячейки, но в отличие от атомов твёрдого тела они время от времени перескакивают от одного узла к другому. В результате движение атомов будет весьма сложным: оно колебательное, но вместе с тем центр колебаний перемещается в пространстве.

Газ, испарение, конденсация и плавление

Определение

Газ -- такое состояние вещества, в котором расстояния между молекулами велики.

Силами взаимодействия между молекулами при невысоких давлениях можно пренебречь. Частицы газа заполняют весь объем, который предоставлен газу. Газы можно рассматривать как сильно перегретые или ненасыщенные пары. Особым видом газа является плазма -- это частично ли полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Плазма представляет собой газ из заряженных частиц, которые взаимодействуют между собой с помощью электрических сил на большом расстоянии, но не имеют ближнего и дальнего расположения частиц.

Вещества могут переходить из одного агрегатного состояния в другое.

Определение

Испарение -- это процесс изменения агрегатного состояния вещества, при котором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциальную энергию взаимодействия молекул.

Испарение -- это фазовый переход. При испарении часть жидкости или твердого тела переходит в пар. Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью называется насыщенным паром. При этом изменение внутренней энергии тела:

\[\triangle \ U=\pm mr\ \left(1\right),\]

где m -- масса тела, r -- удельная теплота парообразования (Дж/кг).

Определение

Конденсация -- процесс, обратный парообразованию.

Расчет изменения внутренней энергии происходит по формуле (1).

Определение

Плавление -- процесс перехода вещества из твердого состояния в жидкое, процесс изменения агрегатного состояния вещества.

Когда вещество нагревают увеличивается его внутренняя энергия, следовательно, увеличивается скорость теплового движения молекул. В том случае, если достигнута температура плавления вещества, то кристаллическая решетка твердого тела начинает разрушаться. Связи между частицами разрушаются, возрастает энергия взаимодействия между частицами. Теплота, передаваемая телу, идет на увеличении внутренней энергии этого тела, и часть энергии идет на совершение работы по изменению объема тела при его плавлении. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например, лед, чугун. Аморфные тела не имеют определенной температуры плавления. Плавление является фазовым переходом, который сопровождается скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она не изменяется в ходе процесса. При этом изменение внутренней энергии тела:

\[\triangle U=\pm m\lambda \left(2\right),\]

где $\lambda $ -- удельная теплота плавления (Дж/кг).

Процесс обратный плавлению - кристаллизация. Расчет изменения внутренней энергии происходит по формуле (2).

Изменение внутренней энергии каждого тела системы в случае нагревания или охлаждения можно рассчитать по формуле:

\[\triangle U=mc\triangle T\left(3\right),\]

где c - удельная теплоемкость вещества, Дж/(кгК), $\triangle T$- изменение температуры тела.

При изучении переходов веществ из одних агрегатных состояний в другие невозможно обойтись без так называемого уравнения теплового баланса , которое гласит: суммарное количество теплоты, которое выделяется в теплоизолированной системе, равно количеству теплоты (суммарному), которое в этой системе поглощается.

По своему смыслу, уравнение теплового баланса -- это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

Пример 1

Задание: В теплоизолированном сосуде находятся вода и лед при температуре $t_i= 0^oС$. Масса воды ($m_{v\ })$ и льда ($m_{i\ })$ соответственно равны 0,5 кг и 60 гр. В воду впускается водяной пар массой $m_{p\ }=$10 гр. при температуре $t_p= 100^oС$. Какой станет температура воды в сосуде после установления теплового равновесия? Теплоемкость сосуда не учитывать.

Решение: Определим, какие процессы происходят в системе, какие агрегатные состояния вещества мы имели и какие получили.

Водяной пар конденсируется, отдавая тепло.

Это тепло идет на плавление льда и, возможно, нагрев имеющейся и полученной изо льда воды.

Проверим сначала, какое количество теплоты выделяется при конденсации имеющейся массы пара:

здесь из справочных материалов имеем $r=2,26 10^6\frac{Дж}{кг}$- удельная теплота парообразования (применима и для конденсации).

Для плавления льда необходимо тепла:

здесь из справочных материалов имеем $\lambda =3,3\cdot 10^5\frac{Дж}{кг}$- удельная теплота плавления льда.

Получаем, что пар отдает тепла больше, чем требуется, только для расплавления имеющегося льда, следовательно уравнение теплового баланса запишем в виде:

Теплота выделяется при конденсации пара массой $m_{p\ }$ и остывании воды, которая образуется из пара от температуры $T_p$ до искомой T. Теплота поглощается при плавлении льда массой $m_{i\ }$ и нагревании воды массой $m_v+m_i$ от температуры $T_i$до $T.\ $ Обозначим $T-T_i=\triangle T$, для разности $T_p-T$ получим:

Уравнение теплового баланса приобретет вид:

\ \ \[\triangle T=\frac{rm_{p\ }+cm_{p\ }100-лm_{i\ }}{c\left(m_v+m_i+m_{p\ }\right)}\left(1.6\right)\]

Проведем вычисления, учитывая, что теплоемкость воды табличная $c=4,2\cdot 10^3\frac{Дж}{кгК}$, $T_p=t_p+273=373K,$ $T_i=t_i+273=273K$:

$\triangle T=\frac{2,26\cdot 10^6\cdot 10^{-2}+4,2\cdot 10^3\cdot 10^{-2}10^2-6\cdot 10^{-2}\cdot 3,3\cdot 10^5}{4,2\cdot 10^3\cdot 5,7\cdot 10^{-1}}\approx 3\left(К\right)$тогда T=273+3=276 (K)

Ответ: Температура воды в сосуде после установления теплового равновесия станет равна 276 К.

Пример 2

Задание: На рисунке показан участок изотермы, отвечающий переходу вещества из кристаллического в жидкое состояние. Что соответствует этому участку на диаграмме p,T?

Вся совокупность состояний, изображенных на диаграмме p,V горизонтальным отрезком прямой на диаграмме p,T изображается одной точкой, определяющей значения p и T, при которых осуществляется переход из одного агрегатного состояния в другое.

Всем, я думаю, известно 3 основных агрегатных состояния вещества: жидкое, твердое и газообразное. Мы сталкиваемся с этими состояниями вещества каждый день и повсюду. Чаще всего их рассматривают на примере воды. Жидкое состояние воды наиболее привычно для нас. Мы постоянно пьем жидкую воду, она течет у нас из крана, да и сами мы на 70% состоим из жидкой воды. Второе агрегатное состояние воды — это обычный лед, который зимой мы видим на улице. В газообразном виде воду тоже легко встретить в повседневной жизни. В газообразном состоянии вода — это, всем нам известный, пар. Его можно увидеть, когда мы, к примеру, кипятим чайник. Да, именно при 100 градусах вода переходит из жидкого состояния в газообразное.

Это три привычных для нас агрегатных состояния вещества. Но знаете ли вы, что их на самом деле 4? Я думаю, хоть раз каждый слышал слово «плазма ». А сегодня я хочу, чтобы вы еще и узнали побольше о плазме — четвертом агрегатном состоянии вещества.

Плазма — это частично или полностью ионизированный газ с одинаковой плотностью, как положительных, так и отрицательных зарядов. Плазму можно получить из газа — из 3 агрегатного состояния вещества путем сильного нагревания. Агрегатное состояние вообще, по сути, полностью зависит от температуры. Первое агрегатное состояние — это самая низкая температура, при которой тело сохраняет твердость, второе агрегатное состояние — это температура при которой тело начинает плавиться и становиться жидким, третье агрегатное состояние — это наиболее высокая температура, при ней вещество становиться газом. У каждого тела, вещества температура перехода от одного агрегатного состояние к другому совершенно разная, у кого-то ниже, у кого-то выше, но у всех строго в такой последовательности. А при какой же температуре вещество становиться плазмой? Раз это четвертое состояние, значит, температура перехода к нему выше, чем у каждого предыдущего. И это действительно так. Для того, чтобы ионизировать газ необходима очень высокая температура. Самая низкотемпературная и низкоионизированная (порядка 1%) плазма характеризуется температурой до 100 тысяч градусов. В земных условиях такую плазму можно наблюдать в виде молний. Температура канала молнии может превышать 30 тысяч градусов, что в 6 раз больше, чем температура поверхности Солнца. Кстати, Солнце и все остальные звезды — это тоже плазма, чаще все-таки высокотемпературная. Наука доказывает, что около 99% всего вещества Вселенной — это плазма.

В отличие от низкотемпературной, высокотемпературная плазма обладает практически 100% ионизацией и температурой до 100 миллионов градусов. Это поистине звездная температура. На Земле такая плазма встречается только в одном случае - для опы-тов тер-мо-ядер-ного син-теза. Кон-тро-ли-ру-е-мая реак-ция доста-точно сложна и энер-го-за-тратна, а вот некон-тро-ли-ру-е-мая доста-точно заре-ко-мен-до-вала себя как ору-жие колос-саль-ной мощ-но-сти - тер-мо-ядер-ная бомба, испы-тан-ная СССР 12 авгу-ста 1953 года.

Плазму классифицируют не только по температуре и степени ионизации, но и по плотности, и по квазинейтральности. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма. Ну, с этим, думаю, все понятно. А вот что такое квазинейтральность знают далеко не все. Квазинейтральность плазмы — это одно из важнейших ее свойств, заключающееся в практически точном равенстве плотностей входящих в её состав положительных ионов и электронов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Почти вся плазма квазинейтральна. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Мы совсем мало рассмотрели земных примеров плазмы. А ведь их достаточно много. Чело-век научился при-ме-нять плазму себе во благо. Бла-го-даря чет-вер-тому агре-гат-ному состо-я-нию веще-ства мы можем поль-зо-ваться газо-раз-ряд-ными лам-пами, плаз-мен-ными теле-ви-зо-рами, дуго-вой элек-тро-свар-кой, лазе-рами. Обыч-ные газо-раз-ряд-ные лампы днев-ного света — это тоже плазма. Существует в нашем мире также плазменная лампа . Ее в основном используют в науке, чтобы изучить, а главное — увидеть некоторые из наиболее сложных плазменных явлений, включая филаментацию. Фотографию такой лампы можно увидеть на картинке ниже:

Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Об одном из ее примеров мы уже говорили. Это молния. Но помимо молний плазменными явлениями можно назвать север-ное сия-ние, “огни свя-того Эльма”, ионосферу Земли и, конечно, огонь.

Заметьте, и огонь, и молния, и другие проявления плазмы, как мы это называем, горят. Чем обусловлено столь яркое испускание света плазмой? Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией послерекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу. Именно поэтому плазма светиться.

Хотелось бы так же немного рассказать об истории плазмы. Ведь когда-то плазмой назывались лишь такие вещества, как жидка составляющая молока и бесцветная составляющая крови. Все изменилось в 1879 году. Именно в тот год знаменитый английский ученый Уильям Крукс, исследуя электрическую проводимость в газах, открыл явление плазмы. Правда, назвали это состояние вещества плазмой лишь в 1928. И это совершил Ирвинг Ленгмюр.

В заключении хочу сказать, что такое интересное и загадочное явление, как шаровая молния, о которой я не раз писала на этом сайте, это, конечно же, тоже плазмойд, как и обычная молния. Это, пожалуй, самый необычный плазмойд из всех земных плазменных явлений. Ведь существует около 400 самых различных теорий на счет шаровой молнии, но не одна из них не была признана воистину правильной. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.

Обычную плазму, конечно, тоже создавали в лабораториях. Когда-то это было сложным, но сейчас подобный эксперимент не составляет особого труда. Раз уж плазма прочно вошла в наш бытовой арсенал, то и в лабораториях над ней немало экспериментируют.

Интереснейшим открытием в области плазмы стали эксперименты с плазмой в невесомости. Оказывается, в вакууме плазма кристаллизуется. Это происходит так: заряженные частицы плазмы начинают отталкиваться друг от друга, и, когда у них есть ограниченный объем, они занимают то пространство, которое им отведено, разбегаясь в разные стороны. Это весьма похоже на кристаллическую решетку. Не означает ли это, что плазма являеться замыкающим звеном между первым агрегатным состоянием вещества и третьим? Ведь она становиться плазмой благодаря ионизации газа, а в вакууме плазма вновь становиться как бы твердой. Но это только мое предположение.

Кристаллики плазмы в космосе имеют также и достаточно странную структуру. Эту структуру можно наблюдать и изучать только в космосе, в настоящем космическом вакууме. Даже если создать вакуум на Земле и поместить туда плазму, то гравитация будет просто сдавливать всю «картину», образующуюся внутри. В космосе же кристаллы плазмы просто взлетают, образуя объемную трехмерную структуру странной формы. После отправления результатов наблюдения за плазмой на орбите земным ученым, выяснилось, что завихрения в плазме странным образом повторяют структуру нашей галактики. А это значит, что в будущем можно будет понять, как зародилась наша галактика путем изучения плазмы. Ниже на фотографиях показаны та самая кристаллизованная плазма.

Это все, что мне бы хотелось сказать на тему плазмы. Надеюсь, она вас заинтересовала и удивила. Ведь это воистину удивительное явление, а точнее состояние — 4 агрегатное состояние вещества.