Виды микроскопии. Виды микроскопии и их основные характеристики

Важность науки в жизни всего общества отрицать очень сложно. Учёные и их разработки дали обществу всё то, чем оно теперь пользуется с радостью и наслаждается. Разработки учёных в разных областях позволяют побеждать смертельные болезни, бороться с психическими расстройствами, создавать уникальную «умную» технику и даже роботов. Возможности науки поистине безграничны. Новые лица всегда приносят с собой новые идеи, которые становятся основой для будущих разработок. Однако множество разработок базируется на простых и проверенных методах.

Многие мудрецы прошлого говорили о том, что существует макро-, микромир. На том этапе развития люди не могли осознать всю глубину этих слов. Ведь макро- и микромир действительно существуют и очень тесно взаимодействуют. Крохотные изменения в структуре клетки могут быть вызваны глобальными изменениями в Солнечной системе. На сегодняшний день доказать или опровергнуть такую взаимосвязь очень сложно, но исследования мира бактерий и клеток говорят о том, что клетка - это маленькая Вселенная.

Микроскопия

Микроскопия - это научное при помощи микроскопа. В переводе с греческого это слово означает «маленький, небольшой». Микроскопия может подразделяться на несколько подвидов: оптическую, многофотонную, рентгеновскую, лазерную и электронную. Цель этого способа исследования заключается в увеличенном наблюдении за объектом и регистрацией замеченных изменений.

История микроскопа

В начале своего исторического развития микроскопы представляли собой которые использовали лучи видимого света. Такие приборы были очень слабы для наблюдения и подходили только для простейших операций. Идея возникновения электронного микроскопа возникла в тот момент, когда учёные задумались о замене электромагнитного излучения на электронный пучок. Это событие стало для развития электронного микроскопа, который значительно расширил возможности наблюдения за объектом.

Методы микроскопии

Для того чтобы правильно и тщательно обследовать какой-либо объект, необходимо работать по определённому алгоритму. Подобные алгоритмы вырабатываются один раз и применяются годами. Для того чтобы изучать окружающий мир при помощи специальной техники, необходимо владеть особыми методами. Методы микроскопии - это совокупность различных алгоритмов, следуя которым, можно основательно и системно изучить конкретный объект микромира. Прохождение пучка света через микроскоп сопровождается некоторыми изменениями первоначальных характеристик, которые могут быть вызваны структурным строением предмета. Этот процесс может сопровождаться рядов оптических эффектов, таких как отражение, поглощение, преломление, дисперсия и т.д.

Методы световой микроскопии

Световая микроскопия - это система методов, которые используют различные оптические эффекты для достоверного отображения результатов. Видимые элементы и характер полученного изображения будут во многом зависеть от освещения. Всего насчитывается большое количество методов микроскопии: светлого поля, косого освещения, интерференционного контраста, тёмного поля, поляризационный метод, фазово-контрастная, ультрафиолетовая, люминесцентная, инфракрасная микроскопия, конфокальный микроскоп.

Все эти методы имеют определённые достоинства и недостатки. При работе с образцом выбирать тот или иной метод следует исходя из его адекватности в данной ситуации. Сильные и слабые стороны каждого метода не важны в целом, главное, чтобы метод был применим в заданных условиях.

Микроскопия и медицина

Применение микроскопии в медицине имеет огромный потенциал. На сегодняшний день благодаря микроскопам можно исследовать различные клетки организма человека для того, чтобы точно определять состояние здоровья. Клетки организма дают наиболее точный и достоверный результат, который до недавнего времени было невозможно получить, так как микроскопы не могли дать исчерпывающей информации.

Использование таких приборов очень перспективно, ведь методы лечения и диагностики могут разительно преобразиться и вовсе перейти на новый уровень. Исследование с помощью микроскопов известно и применяется длительное время, однако наука стоит на пороге того, чтобы лечить человека клетками. Это уникальная возможность, которая позволит отойти от привычных методов лечения и забыть о лекарствах. Клетка - самый мощный элемент организма. Говорить о том, какую пользу может принести пересадка больному человеку здоровых клеток, просто бессмысленно, ведь это очевидно.

Исследование мочи

Общий анализ мочи - это комплекс мероприятий, которые направлены на исследование свойств мочи и её физико-химического состава. Важными показателями при этом являются цвет, запах, реакция, прозрачность, плотность, а также содержание в моче различных веществ. Микроскопия осадка мочи позволяет определить наличие солей, клеточных элементов и цилиндров. Следует понимать, что моча - это конечный продукт деятельности почек, который может очень точно отображать состояние обменных процессов и крови в организме.

Анализ осадка мочи

Микроскопия мочи позволяет создать более полную картину при полном обследовании организма. Также мазок часто используют для обычной и дифференциальной диагностики болезней мочевыводящих путей и почек. Во время лечения микроскопию мочи могут назначать для того, чтобы получить оценку эффективности докторского вмешательства. Исследование мочи позволяет выявить конкретные или потенциальные проблемы в водно-электролитном балансе организма, также в процессе обмена веществ. Анализ мочи весьма эффективен при диагностике на болезни желудочно-кишечного тракта, а также при инфекционных и воспалительных процессах в организме. Иногда микроскопию мочи используются для того, чтобы следить за состоянием пациента в период терапевтического или хирургического лечения.

Исследование крови под микроскопом

Кровяные тельца формируются в красном костном мозге, а затем выбрасываются в кровоток. Каждая выполняет свою определённую функцию. Лейкоциты нужны для борьбы с инфекционными клетками, эритроциты способствуют обогащению клеток кислородов и удалению из них углекислого газа, тромбоциты очень важны для гемостаза. В нормальных условиях тело человека вырабатывает нормативное значение всех клеток, которое не выходит за определённые рамки. При возникновении каких-либо осложнений или при болезни клетки крови могут менять свои размеры, форму, цвет и количество. Только благодаря точному микроскопическому исследованию можно определить состояние клеток и сделать соответствующие выводы.

Кровь - это живительная жидкость организма, которая обеспечивает обмен полезными веществами между всеми клетками. Микроскопия мазка крови - это исследование, которое производится под микроскопом. Исследуется препарат, приготовленный из одной капли крови. Эта процедура входит в общий анализ крови или лейкоцитарную формулу и отдельно не совершается.

Микроскопия мазка

Для чего нужен Микроскопия мазка крови даёт специалисту очень важные знания о состоянии здоровья человека. При помощи этого анализа можно определить количественное соотношение эритроцитов, тромбоцитов, лейкоцитов, а также их формы и размер. Кроме того, позволяет определять количественное выражение незрелых лейкоцитов, что является очень важным моментом в ряде заболеваний. Также мазок крови позволяет качественно диагностировать заболевания, которые могут быть связаны с нарушениями функций крови, её образования, свёртываемостью, а также разрушением Очень важной задачей микроскопического мазка на кровь является регулярное отслеживание состояния клеток крови, их зрелость после лучевой и химиотерапии, при проблемах с гемоглобином, а также при лейкозах.

Назначается мазок на кровь в том случае, если общий анализ крови показал, что увеличено количественное выражение лейкоцитов, незрелых или атипичных клеток. Для мазка можно использовать биоматериал из крови или капилляров.

Биология и микроскопы

Биология значительно расширяет возможности использования микроскопов. Как уже говорилось раньше, цитология во многом опирается на современные и мощные микроскопы. Микроскопия в биологии открывает для учёных невиданные просторы для опытов и исследований. Современные разработки позволяют уже сейчас говорить о том, какое будущее нас ждёт.

Микроскопия в биологии имеет очень широкое применение. Приборы позволяют исследовать организмы, которые недоступны глазу человека, но очень важны для научных экспериментов. В биологии чаще всего используют метод электронной микроскопии, который даёт изображение за счёт направленного потока электронов. При этом даже световой микроскоп позволяет исследовать живые биологические объекты.

Метод микроскопии в биологии применяется очень активно, так как практически все разновидности применимы для биологических исследований. Интерференционная микроскопия позволяет исследовать прозрачные жидкости и объекты, а также давать их качественный анализ. Это возможно благодаря тому, что луч света, проходя через прибор, раздваивается: одна его часть проходит через объект, а другая - мимо. Таким образом, два луча интерферируют и соединяются, давая полноценное изображение.

Микроскопия в разных областях применения

Область применения микроскопии очень широка. Несмотря на то что изначально микроскопы были предназначены для исследований в области биологии, на сегодняшний день сфера их влияния значительно расширилась. Микроскопия - это комплекс методов, который нашёл своё применение при анализе твёрдых и кристаллических тел, структуре и строений поверхностей. Также микроскопы активно используются в медицине не только для диагностики, но и при выполнении микрохирургических операций. Более того, известно, что учёными был разработан подводный лазерный микроскоп, цель которого состоит в поиске внеземной жизни на Европе.

Также не следует забывать о бурном развитии нанотехнологий, которые немыслимы без микроскопов. Развитие этой отрасли приводит к тому, что разновидности микроприборов постоянно совершенствуются. Более того, появляются новые которые предназначены для исследования определённой среды.

Подводя некоторые итоги, следует сказать о том, что микроскопия - это перспективная область, которая с каждым годом развивается всё более активно. Интерес к стволовым клеткам человека, а также развитие нанотехнологий ведёт к тому, что микроскопы становятся неотъемлемой частью любой исследовательской работы.

Гистологическая техника. Методы и техника микроскопирования

Цель занятия: Познакомиться с принципами работы и использования приборов специальной микроскопии в исследовательских целях. Закрепить навык микроскопирования гистологического препарата.

¨ Задание:

1. Заполните таблицу 2, отметив основные виды микроскопии, их разновидности, кратко сформулируйте цели использования каждой разновидности.

Таблица 2

Методы и техника микроскопирования

1. Световая микроскопия. Применяются обычные световые микроскопы и их разновидности, в которых используются источники света с различными длинами волн. В световом микроскопе можно видеть не только отдельные клетки размером от 4 до 150 мкм, но и их внутриклеточные структуры – органеллы и включения. Для усиления контрастности микрообъектов применяют их окрашивание.

а) Ультрафиолетовая микроскопия. Используются более короткие ультрафиолетовые лучи с длинной волны около 0,2 мкм. Полученное невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (люминесцентный экран, электронно-оптический преобразователь).

б) Флюоресцентная (люминесцентная) микроскопия. Суть метода заключается в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с большей длиной волны. Применяются ртутные и ксеоновые лампы сверхвысокого давления, обладающие высокой яркостью в области ближних ультрафиолетовых и сине-фиолетовых лучей. Любая клетка живого организма обладает собственной флюоросценцией (часто довольно слабой).

Различают:

Первичная флюоресценция – обладают серотонин, катехоламины (адреналин и норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида (метод Фалька).

Вторичная флюоресценция возникает при обработке препаратов специальными красителями – флюорохромами .

в) Фазово-контрастная микроскопия. Этот методслужит для получения контрастных изображений прозрачных и бесцветных живых объектов, невидимых при обычных методах микроскопирования. Для этого неокрашенные структуры помещают в кольцевую диафрагму, помещаемую в конденсоре, и фазовой пластинки, находящейся в объективе. Такая конструкция оптики дает возможность преобразовать не воспринимаемы глазом фазовые изменения прошедшего через неокрашенный препарат света в изменение его амплитуды, т.е. яркости получаемого изображения.

г) Микроскопия в темном поле. Достигает объективатолько свет, который дает дифракцию структур в препарате. В микроскопе есть специальный конденсор, который освещает препарат строго косым светом. Таким образом, поле выглядит темным, а мелкие частицы в препарате отражают свет, который далее попадает в объектив. Этот метод используется для изучения живых объектов, например зерен серебра, которые выглядят светлыми на темном поле. В клинике его применяют для изучения кристаллов в моче (мочевая кислота, оксалаты), для демонстрации спирохет и т.д.

д) Интерференционная микроскопия. Используется дифференциальный интерференционный микроскоп (с оптикой Номарского), который используют для изучения рельефа поверхности клеток и других биологических объектов.

В этом микроскопе пучок света от осветителя разделяется на два потока: один проходит через объект и изменяет по фазе колебания, второй идет, минуя объект. В призмах объектива оба пучка соединяются и интерферируют между собой. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Преимущество такой микроскопии является возможность наблюдать клетки в процессе движения и митоза. При этом регистрация движения клеток может производиться с помощью покадровой микрокиносъемки.

е) Темнопольный микроскоп применяется для получения изображений прозрачных живых объектов. Образец в нем рассматривается при столь «косом» освещении, что прямой свет не имеет возможности попасть в объектив. Изображение формируется светом, дифрагированным на объекте, и в результате объект выглядит очень светлым на темном фоне (с очень большим контрастом).

2. Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляризационных фильтра – первый (поляризатор) между пучком света и объективом, а второй (анализатор) между линзой объектива и глазом. Оба фильтра могут вращаться, изменяя направления пучка света. Структуры, содержащие продольно ориентированные молекулы (коллаген, микротрубочки, микрофиламенты), и кристаллические структуры (в Лейдига – гландулоциты яичка) при изменении оси вращения проявляются как светящиеся. Способность кристаллов или паракристаллических образований к раздвоению световой волны на обыкновенную и перпендикулярную к ней называется двойным лучепреломлением. Такой способностью обладают фибриллы поперечно-полосатых мышц.

3. Электронная микроскопия. Рассматривая характеристики светового микроскопа, можно убедиться, что единственным путем увеличения разрешения оптической системы будет использование источника освещения, испускающего волны с наименьшей длиной. Таким источником может быть раскаленная нить, которая в электрическом поле выбрасывает поток электронов, последний можно фокусировать, пропуская через магнитное поле. Это послужило основой для создания электронного микроскопа, в котором уже сейчас достигнуто разрешение в 0,1 нм. По принципу конструкции электронный микроскоп очень сходен с оптическим: в нем есть источник освещения (катод электронной пушки), конденсорная система (конденсорная магнитная линза), объектив (объективная магнитная линза), окуляр (проекционные магнитные линзы), только вместо сетчатки глаза электроны попадают на люминесцирующий экран или на фотопластинку. В электронном микроскопе используется поток электронов, с более короткими, чем в световом микроскопе, длинами волн. Разрешаемое расстояние в 100 000 раз меньше, чем в световом микроскопе. В современных электронных микроскопах разрешаемое расстояние составляет около 0,1-0,7 нм.

В настоящее время используются трансмиссионные и сканирующие электронные микроскопы, которые имеют большую глубину резкости, широкий диапазон непрерывного изменения увеличения (от 10-ков до 10-ков тысяч раз) и высокая разрешающая способность.



2. Рассмотрите строение светового микроскопа. Повторите правила работы с ним.

Работа с микроскопом . Устройство типичного биологического микроскопа (рис.1). Штативная подставка выполняется в виде тяжелой отливки. К ней на шарнире прикреплен тубусодержатель, несущий все остальные части микроскопа.

С помощью тубуса, в который вмонтированы линзовые системы, можно перемещать их относительно образца для фокусировки. На нижнем конце тубуса расположен объектив.

Как правило, микроскоп снабжен несколькими объективами разного увеличения на револьверной головке, которая позволяет устанавливать их в рабочее положение на оптической оси. При исследовании образца оператор обычно начинает с объектива, который имеет наименьшее увеличение и наиболее широкое поле зрения, находит интересующие его детали, после чего рассматривает их, пользуясь объективом с большим увеличением.

Окуляр вмонтирован в конец выдвижного держателя, при помощи которого можно при необходимости изменять длину тубуса. Передвигая вверх и вниз весь тубус с объективом и окуляром, микроскоп наводится на резкость.

В качестве образца обычно берется очень тонкий прозрачный слой или срез, который кладут на стеклянную пластинку прямоугольной формы, называемую предметным стеклом, а сверху накрывают более тонкой стеклянной пластинкой меньших размеров, которая называется покровным стеклом. Чтобы увеличить контраст, образец часто окрашивают химическими веществами.

Предметное стекло кладут на предметный столик таким образом, чтобы образец находился над центральным отверстием столика. Столик, как правило, бывает снабжен механизмом для плавного и точного перемещения образца в поле зрения.

Третья система линз – конденсор – концентрирует свет на образце. Держатель конденсоров, которых может быть несколько, находится под предметным столиком. Здесь же расположена ирисовая диафрагма для регулировки апертуры. Еще ниже находится осветительное зеркало, устанавливаемое в универсальном шарнире. За счет того, что зеркало отбрасывает свет лампы на образец оптическая система микроскопа и создает видимое изображение.

Рис. 1. Микроскоп для биологических исследований.

А-общий вид: 1 - основание; 2 – тубусодержатель; 3 – тубус; 4 – коробка механизма микроподачи; 5 – револьверное устройство; 6 – предметный столик; 7 - макрометрический винт; 8 – микрометрический винт; 9 – винт конденсора; 10 – окуляр; 11 – объективы; 12 – конденсор с ирисовой диафрагмой; 13 – зеркало; Б – объективы малого (а), большого (б) и иммерсионного (в) увеличения.

3. Рассмотрите микропрепараты (Таблица 3), зарисуйте, подпишите. Укажите тип красителя и увеличение.

Таблица 3

Препараты тканей с разным окрашиванием

Световая микроскопия. В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма. Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.

Освещение при микроскопии играет весьма существенную роль. Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.

Хорошее освещение достигается при установке света по методу Келлера. Для этого устанавливают осветитель на расстоянии 30-40 см от микроскопа и, перемещая патрон с лампочкой или весь осветитель, добиваются четкого изображения нити накала лампы на закрытой полностью диафрагме конденсора так, чтобы это изображение полностью заполняло отверстие конденсора. Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа. Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы. И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.

Виды световой микроскопии:

1) Иммерсионная световая микроскопия. Иммерсионные объективы используются для изучения объектов невидимых или плохо видимых через сухие системы микроскопа.2) Фазовоконтрастная микроскопия предназначена для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля.3) Аноптральная микроскопия – разновидность фазовоконтрастной микроскопии, при которой применяют объективы со специальными пластинками, нанесенными на одну из линз в виде затемненного кольца.4) Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой - мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом).5) Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов).6) Темнопольная микроскопия. При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В объектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).7) Люминесцентная микроскопия - метод наблюдения под микроскопом люминесцентного свечения микрообъектов при освещении их сине-фиолетовым светом или ультрафиолетовыми лучамиЛюминесцентная микроскопия. Метод основан на способности некоторых веществ светиться под действием коротковолновых лучей света. При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждаемого люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого и зеленого цвета. Препараты для люминесцентной микроскопии окрашивают специальными светящимися люминесцентными красителями – флуохромами (акридиновый оранжевый, изотиоционат флуоресцеина и др.). Лучи света от сильного источника (обычно ртутной лампы сверхвысокого давления) пропускают через сине-фиолетовый светофильтр. Под действием этого коротковолнового излучения окрашенные флуохромом клетки или бактерии начинают светиться красным или зеленым светом. Для того, чтобы синий свет, вызвавший люминесценцию, не мешал наблюдению, над окуляром ставят запирающий желтый светофильтр, задерживающий синие, но пропускающий желтые, красные и зеленые лучи. В результате при наблюдении в люминесцентном микроскопе на темном фоне видны будут клетки или бактерии, светящиеся желтым, зеленым или красным цветом. Например, при окраске акридиновым оранжевым ДНК клетки (ядерное вещество) будет светиться ярко-зеленым цветом. Метод люминесцентной микроскопии позволяет изучать живые нефиксированные бактерии, окрашенные сильно разведенными флуохромами, не причиняющими вреда миробным клеткам. По характеру свечения могут быть дифференцированы отдельные химические вещества, входящие в состав микробной клетки. Темнопольная микроскопия. При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В обектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).

Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы. Так как аппаратура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.

Этот метод микроскопии удобен при изучении живых бактерий, спирохет и их подвижности.

Фазово-контрастная микроскопия. Обыкновенные окрашенные препараты поглощают часть проходящего через них света, в результате чего амплитуда световых волн снижается, и частицы препарата выглядят темнее фона. При прохождении света через неокрашенный препарат амплитуда световых волн не меняется, происходит лишь изменение фазы световых волн, прошедших через частицы препарата. Однако человеческий глаз улавливать это изменение фазы света не способен, поэтому неокрашенный препарат при правильной установке освещения в микроскопе будет невидим.

Фазово-контрастное устройство позволяет превратить изменение фазы лучей, прошедших через частицы неокрашенного препарата, в изменения амплитуды, воспринимаемые человеческим глазом, и, таким образом, позволяет сделать неокрашенные препараты отчетливо видимыми.

Приспособление для фазово-контрастной микроскопии включает в себя конденсор с набором кольцевых диафрагм, обеспечивающих освещение препарата полным конусом света, и фазово-контрастные объективы, которые отличаются от обычных тем, что в их главном фокусе располагается полупрозрачная фазовая пластинка в виде кольца, вызывающая сдвиг фазы проходящего через нее света. Установку освещения проводят так, чтобы весь свет, прошедший через кольцевидную диафрагму конденсора, в дальнейшем прошел через расположенное в объективе фазовое кольцо.

При рассмотрении препарата весь свет, прошедший через участки препарата в которых нет каких-либо объектов, пройдет через фазовое кольцо и даст светлое изображение фона. Свет, прошедший через имеющиеся в препарате частицы, например, бактериальные клетки, получит некоторое изменение фазы и, кроме того, разделится на два луча – недифрагированный и дифрагированный. Недифрагированные лучи, пройдя в дальнейшем через кольцевидную фазовую пластинку в объективе, получат дополнительный сдвиг фазы. Дифрагированные лучи пройдут мимо фазовой пластинки, и их фаза не изменится. В плоскости полевой диафрагмы окуляра произойдет интерференция (наложение) дифрагированного и недифрагированного лучей, а так как эти лучи идут в разных фазах, произойдет их взаимное частичное гашение и уменьшение амплитуды. Благодаря этому микробные клетки будут выглядеть темными на светлом фоне.

Существенными недостатками фазово-контрастной микроскопии являются слабая контрастность получаемых изображений и наличие светящихся ореолов вокруг объектов. Фазово-контрастная микроскопия не увеличивает разрешающей способности микроскопа, но помогает выявить детали структуры живых бактерий, стадии их развития, изменения в них под действием различных агентов (антибиотики, химические вещества и т.д.).

Электронная микроскопия. Для изучения структуры клеток на субклеточном и молекулярном уровнях, а также для изучения вирусов используют электронную микроскопию. Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическом микроскопом в видимом или ультрафиолетовом свете. Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т.е. различать как отдельные объекты, отстоящие друг от друга всего на 2А (0,2 нм или 0,0002 мкм) или даже меньше, в то время как предел разрешения световой оптики лежит вблизи 0,2 мкм (он зависит от длины волны используемого света).

Электронная микроскопия, при которой изображение получают благодаря прохождению (просвечиванию) электронов через образец, называется просвечивающей (трансмиссивной). При сканирующей (растровой), или туннельной электронной микроскопии пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое посредством катодно-лучевой трубки формирует изображение на светящемся экране микроскопа по аналогии с формированием телевизионного изображения.

Принципиальная оптическая схема электронного микроскопа аналогична схеме светового, в котором все оптическое элементы заменены соответствующими электрическими: источник света – источником электронов, стеклянные линзы – линзами электромагнитными. В электронных микроскопах просвечивающего типа различают три системы: электронно-оптическую, вакуумную и электропитания.

Источником электронов является электронная пушка, состоящая из V-образного вольфрамового термокатода, который при нагревании до 2900°С при подаче постоянного напряжения до 100 кВ в результате термоэмиссии испускает свободные электроны, ускоряемые затем электростатическим полем, создаваемым между фокусирующим электродом и анодом. Электронный пучок затем формируется с помощью конденсорных линз и направляется на исследуемый объект. Электроны, проходя сквозь объект, за счет его разной толщины и электроплотности отклоняются под различными углами и попадают в объективную линзу, которая формирует первое увеличение объекта.

После объективной линзы электроны попадают в промежуточную линзу, которая предназначена для плавного изменения увеличения микроскопа и получения дифракции с участков исследуемого образца. Проекционная линза создает конечное увеличенное изображение объекта, которое направляется на флуоресцентный экран. Благодаря взаимодействию быстрых электронов с люминофором экрана на нем возникает видимое изображение объекта. После наведения резкости сразу проводят фотографирование. Увеличение конечного изображения на экране определяется как произведение увеличений, даваемых объективной, промежуточной и проекционной линзами.

Электронномикроскопическому исследованию могут быть подвергнуты как ультратонкие срезы различных тканей, клеток, микроорганизмов, так и целые бактериальные клетки, вирусы, фаги, а также субклеточные культуры, выделяемые при разрушении клеток различными способами.

Виды электронных микроскопов:

1) Просвечивающий электронный микроскоп (ПЭМ) - это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Для регистрации изображения возможно использование сенсоров, например, ПЗС-матрицы. Первый практический просвечивающий электронный микроскоп был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году с использованием концепции, предложенной ранее Максом Кноллом и Эрнстом Руска.

2) Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) - прибор, позволяющий получать изображения поверхности образца с большим разрешением (несколько нанометров). Ряд дополнительных методов позволяет получать информацию о химическом составе приповерхностных слоёв;

3) Сканирующий туннельный микроскоп (СТМ, англ. STM - scanning tunneling microscope) - прибор, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1-1000 пА при расстояниях около 1 Å.

Современные модели электронных микроскопов устроены так, что сочетают в себе возможности как просвечивающего, так и сканирующего микроскопов, и их легко можно переоборудовать с одного типа на другой.

Просвечивающая электронная микроскопия применяется для изучения ультратонких срезов микробов, тканей, а также строения мелких объектов (вирусов, жгутиков и др.), контрастированных фосфорно-вольфрамовой кислотой, уранилацетатом, напылением металлов в вакууме. Сканирующая электронная микроскопия применяется для изучения поверхности объектов. При просвечивающей электронной микроскопии получают плоскостные изображения объекта, а при сканирующей – удается получить трехмерное объемное изображение. В бактериологии сканирование наиболее эффективно для выявления отростков и других поверхностных структур, для определения формы и топографических отношений как в колониях, так и на поверхности инфицированных тканей.

При сканирующей микроскопии образец фиксируют, высушивают на холоде и напыляют в вакууме золотом или другими тяжелыми металлами. Таким образом получают реплику (отпечаток), повторяющую контуры образца, впоследствии сканируемую.

Недостатки электронного микроскопа:

1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;

2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;

3) дорого стоит и сам электронный микроскоп и его обслуживание;

4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;


Световая микроскопия

При использовании этого метода исследователь оперирует следующими понятиями:

Увеличение – физическое свойство линз объектива и окуляра. Увеличение микроскопа оценивают как произведение увеличения объектива и увеличения окуляра.

Минимальный размер наблюдаемого объекта (d) и разрешение микроскопа – значения, зависящие от характеристик линз объектива, длины волны и от коэффициента преломления среды, отделяющей изучаемый объект от линз объектива или конденсора. Увеличивают разрешение микроскопа применением жидких сред (иммерсионные среды), т.к. коэффициент их преломления больше коэффициента преломления воздуха. В микроскопии используют масляную, глицериновую и водную иммерсионные среды. Теоретически возможный предел разрешения светового микроскопа – 0,2 мкм (минимальное расстояние, на котором различимы два объекта).

Специальные виды микроскопии

Темнопольная. Используют специальный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Темнопольная микроскопия позволяет наблюдать живые объекты. Наблюдаемый объект выглядит как освещенный на темном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты. При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные – фаза световой волны, что и используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии.

Поляризационная микроскопия - формирование изображения неокрашенных анизотропных структур (например, коллагеновые волокна и миофибриллы).

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии и применяется для получения контрастного изображения неокрашенных объектов.

Люминесцентная микроскопия применяется для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от мощного источника проходит через два фильтра. Один фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Другой фильтр пропускает свет длины волны, излучаемой флуоресцирующим объектом. Таким образом, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра.

Флюоресцирующие красители (флюоресцин, родамин и др.) избирательно связываются со специфическими макромолекулами.

Электронная микроскопия

Теоретическое разрешение просвечивающего ЭМ составляет 0,002 нм. Реальное разрешение современных микроскопов приближается к 0,1 нм. Для биологических объектов разрешение ЭМ на практике составляет 2 нм.

Просвечивающий ЭМ состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны фокусируют, наблюдают на флюоресцирующем экране и регистрируют при помощи фотопластинки.

Сканирующий ЭМ применяют для получения трехмерного изображения поверхности исследуемого объекта.

Метод сколов (замораживания-скалывания) применяют для изучения внутреннего строения клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнаженную внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем электронном микроскопе.



в микробиологии: устройство микроскопа и основные приемы микроскопирования живых микроорганизмов

1 Особенности разных видов микроскопии

2 Устройство светлопольного микроскопа

3 Правила работы с иммерсионным объективом

4 Приемы микроскопирования живых микроорганизмов

1 Особенности разных видов микроскопии

Основными задачами микроскопии являются следующие:

    Выявление микроорганизмов в различных материалах.

    Ориентировочная идентификация микроорганизмов в образце.

    Изучение некоторых морфологических признаков и структур микроорганизмов (например, капсул, жгутиков и т. д.).

    Изучение окрашенных мазков из колоний и чистых культур.

На сегодняшний день наиболее используемой является световая микроскопия.

Световая микроскопия обеспечивает увеличение до 2–3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма. Изображение в световом микроскопе формируется вследствие того, что объект и различные его структуры избирательно поглощают свет с различной длиной волны (абсорбционный контраст) или вследствие изменения фазы световой волны при прохождении света через объект (фазовый контраст).

Основными характеристиками любого микроскопа являются разрешающая способность и контраст. Разрешающая способность – это минимальное расстояние, на котором находятся две точки, демонстрируемые микроскопом раздельно. Разрешение человеческого глаза в режиме наилучшего видения равно 0,2 мм. Контраст изображения – это различие яркостей изображения и фона. Если это различие составляет менее 3–4 %, то его невозможно уловить ни глазом, ни фотопластинкой; тогда изображение останется невидимым, даже если микроскоп разрешает его детали. На контраст влияют как свойства объекта, изменяющие световой поток по сравнению с фоном, так и способности оптики уловить возникающие различия в свойствах луча. Возможности светового микроскопа ограничены волновой природой света. Физические свойства света – цвет (длина волны), яркость (амплитуда волны), фаза, плотность и направление распространения волны изменяются в зависимости от свойств объекта. Эти различия и используются в современных микроскопах для создания контраста.

Увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра. У типичных исследовательских микроскопов увеличение окуляра равно 10, а увеличение объективов – 10, 40 и 100. Соответственно, увеличение такого микроскопа составляет от 100 до 1 000. Некоторые из микроскопов имеют увеличение до 2 000. Еще более высокое увеличение не имеет смысла, так как при этом разрешающая способность не улучшается. Напротив, качество изображения ухудшается.

Числовая апертура используется для выражения разрешающей способности оптической системы. Числовая апертура – это оптический «охват» линзы, она является мерой количества света, попадающего в линзу. Числовая апертура объектива указана на его оправе. Апертура конденсора должна соответствовать числовой апертуре объектива. Числовая апертура любой линзы, граничащей с воздухом (т.е. «сухой системы»), не может превысить 1, так как показатель преломления воздуха равен 1. Числовую апертуру можно повысить, если увеличить показатель преломления среды между фронтальной линзой объектива и предметным стеклом, приблизив его к показателю преломления стекла (1,5). Для этого между фронтальной линзой объектива и исследуемым объектом помещают каплю жидкости с показателем преломления большим, чем показатель преломления воздуха, например, каплю воды (n = 1,3), глицерина (n = 1,4) или кедрового (иммерсионного) масла (n = 1,5). Для каждой из указанных выше жидкостей выпускаются специальные объективы, которые называются иммерсионными.

Световая микроскопия включает обычную просвечивающую микроскопию (светло-, темнопольную), фазово-контрастную, люминесцентную. В последнее время разработаны и другие способы микроскопии и микроскопы – инверсионная и конфокальная лазерная сканирующая микроскопия.

Светлопольная микроскопия позволяет исследовать объекты в проходящем свете в светлом поле. Данный вид микроскопии предназначен для исследования морфологии, размеров клеток, их взаимного расположения, структурной организации клеток и других особенностей. У светового микроскопа максимальная разрешающая способность составляет 0,2 мкм, что обеспечивает высокоточное увеличение микроскопа до 1500х.

Фазово-контрастная микроскопия позволяет более четко наблюдать живые прозрачные объекты, которые имеют коэффициенты преломления, близкие к коэффициентам преломления среды. Действие фазово-контрастного микроскопа основано на интерференции света в плоскости изображения, обусловленной сдвигом по фазе (при использовании фазового кольца в апертурной диафрагме). При фазово-контрастной микроскопии часто применяют биологические микроскопы с обратным расположением оптики – инвертированные микроскопы. У таких микроскопов объективы расположены снизу, а конденсор – сверху.

С помощью фазово-контрастной микроскопии изучают форму, размеры, взаимное расположение клеток, их подвижность, размножение, прорастание спор микроорганизмов и т. д. Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне (позитивный фазовый контраст) или светлыми на темном фоне (негативный фазовый контраст).

Темнопольная микроскопия основана на освещении объекта косыми лучами света. При таком освещении лучи не попадают в объектив, поэтому поле зрения выглядит темным. Такое освещение препарата достигается использованием специального темнопольного конденсора. Темнопольная микроскопия является очень простым, но эффективным методом и хорошо подходит для получения изображения живых и неокрашенных биологических образцов. Учитывая простоту установки, качество получаемых изображений весьма хорошее.

При микроскопировании в темном поле можно увидеть объекты, величина которых измеряется сотыми долями микрометра, что находится за пределами разрешающей способности обычного светлопольного микроскопа. Однако наблюдение за объектами в темном поле позволяет исследовать только контуры клеток и не дает возможности рассмотреть их внутреннюю структуру.

Люминесцентная (флуоресцентная) микроскопия основана на способности ряда веществ биологического происхождения или некоторых красителей светиться при их освещении невидимым ультрафиолетовым или синим светом. При использовании ультрафиолетового света разрешающая способность микроскопа может достигать 0,1 мкм.

Клетки микроорганизмов обрабатывают специальными красителями – флуорохромами (акридиновый оранжевый, примулин, родамин и др.) в виде сильно разбавленных водных растворов: 1:500–1:100 000. Такие растворы слабо токсичны, что дает возможность изучать неповрежденную клетку. В зависимости от химического состава, клеточные структуры в разной степени адсорбируют красители и люминесцируют различным образом. Кроме того, флуорохромы неодинаково адсорбируются живыми и мертвыми клетками. Это позволяет использовать данный вид микроскопии для цитологических и иммунологических исследований, определения жизнеспособности клеток и т. д.

Электронная микроскопия позволяет обнаружить объекты, которые не разрешаются при использовании световых или ультрафиолетовых лучей. Теоретически разрешение просвечивающего электронного микроскопа составляет 0,002 нм; реальное разрешение современных электронных микроскопов приближается к 0,1 нм. На практике разрешение для биологических объектов достигает 2 нм.

Короткая длина волны электронов позволяет различить объекты размером 0,5–1,0 нм. В современных электронных микроскопах на экране достигается увеличение 5000– 200 000. Благодаря столь высокому разрешению становится возможным выявление деталей бактериальных структур. Например, с помощью напыления солей тяжелых металлов, окружающих бактерию и проникающих в поверхностные неровности, получают контрастирование за счет дифференциальной задержки электронов. Этот эффект получил название негативного контрастирования .

Электронный микроскоп, в котором изображение формируется благодаря прохождению (просвечиванию) электронов через образец, называют просвечивающим (или трансмиссионным ).

В сканирующем электронном микроскопе (растровая электронная микроскопия (РЭМ) пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое формирует изображение на светящемся экране. Для РЭМ характерны высокая разрешающая способность, большой диапазон увеличений (до 100 000 и выше), большая глубина фокусировки (~100 мкм), многообразие режимов работы. Сканирующий микроскоп дает картину поверхностей и позволяет получать трехмерное изображение.

Лазерная конфокальная микроскопия дает возможность получить отчетливое изображение и наблюдать объекты в фокусе по всему полю. Данный метод пригоден лишь для исследования самосветящихся (флуоресцентных) объектов. При сочетании с компъютерной техникой возможна пространственная реконструкция изучаемого объекта. В конфокальном лазерном сканирующем микроскопе изображения внутренних сечений формируются за счет сканирования сфокусированным лазерным пучком от разных (405, 488, 532, 635 нм) лазеров и пространственной фильтрации излучения. При использовании сканирующей микроскопии ближнего поля (СМБП) достигается высокая разрешающая способность. Наименьший размер элемента, полученного с помощью СМБП, составляет 20 нм при длине волны света 0,486 нм. В изображении контролируемого элемента отсутствуют дифракционные или интерференционные эффекты, затрудняющие определение его границ. Отличительной особенностью СМБП по сравнению с атомно-силовым микроскопом является чувствительность к оптическим характеристикам поверхности контролируемого образца, длине волны света, люминесценции и др.

Компьютерная интерференционная микроскопия позволяет получить высококонтрастное изображение при наблюдении субклеточных структур; во многих случаях применяется для изучения живых клеток. Принцип действия автоматизированного интерференционного микроскопа основан на интерференции световых пучков лазерного излучения, отраженного от опорного зеркала и зеркала, на котором помещен измеряемый фазовый объект. Теоретически предельно достижимая разрешающая способность может составить в среднем 0,2 нм, практически она составляет 0,4 мкм.

Рентгеновская компьютерная томография (РКТ), позитронная эмиссионная томография (ПЭТ) позволяют наблюдать объекты в обычных условиях.