Закон вант гоффа скорость реакции. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса. Влияние изменения концентраций на равновесие

Вант-Гоффа правило

Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °С до 100 °С). Я.Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два - четыре раза . Уравнение, которое описывает это правило следующее:

V 2 = V 1 * Y (T 2 − T 1) / 10

где V2-скорость реакции при данной температуре(T2), V1-скорость реакции при температуре T1, Y-температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиватся в 2 раза при повышении температуры на 10 градусов).

Следует помнить, что правило Вант-Гоффа ограниченную область применимости. Ему не подчиняются многие реакции, например реакции, происходящие при высоких температурах, очень быстрые и очень медленные реакции. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса .

Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле:

Y = (V 2 / V 1) 10 / (T 2 − T 1)


Wikimedia Foundation . 2010 .

Смотреть что такое "Вант-Гоффа правило" в других словарях:

    Вант-Гоффа правило - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ВАНТ ГОФФА ПРАВИЛО – изменение температуры (если оно не выходит за определенные для каждого вида животного рамки нормальных температур) не приводит к качественным изменениям в развитии, а лишь сказывается на темпе дробления … Общая эмбриология: Терминологический словарь

    Приближённое правило, согласно которому при повышении температуры на 10°С скорость химической реакции увеличивается примерно в 2 4 раза. Найдено Я. Х. Вант Гоффом. См. Кинетика химическая … Большая советская энциклопедия

    Правило Вант Гоффа эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант Гофф на… … Википедия

    Правило, сформулированное Вант Гоффом и дополненное Аррениусом, которое в биологической модификации гласит, что скорость обмена веществ организмов при повышении температуры на 10° может быть повышена в 2 3 раза. Экологический энциклопедический… … Экологический словарь

    правило Вант-Гоффа - Правило Вант Гоффа: при повышении температуры на каждые 10° скорость большинства химических реакций увеличивается в 2 4 раза. Общая химия: учебник / А. В. Жолнин … Химические термины

    правило Вант-Гоффа

    правило Вант-Гоффа - van’t Hofo taisyklė statusas T sritis Standartizacija ir metrologija apibrėžtis Teiginys, kuriuo teigiama, kad padidinus temperatūrą 10 laipsnių reakcijos sparta padidėja nuo 2 iki 4 kartų. atitikmenys: angl. van’t Hoff law; van’t Hoff rule vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    правило Вант-Гоффа - van t Hofo taisyklė statusas T sritis chemija apibrėžtis Pakėlus temperatūrą 10 laipsnių reakcijos greitis padidėja 2–4 kartus. atitikmenys: angl. van t Hoff law; van t Hoff rule rus. правило Вант Гоффа … Chemijos terminų aiškinamasis žodynas

    закон Вант-Гоффа - van’t Hofo dėsnis statusas T sritis fizika atitikmenys: angl. Van’t Hoff law vok. Van’t Hoffsche Regel, f; Van’t Hoffsches Gesetz, m rus. закон Вант Гоффа, m; правило Вант Гоффа, m pranc. loi de Van’t Hoff, f … Fizikos terminų žodynas

    ПРАВИЛО - (1) буравчика определяет направление вектора напряжённости магнитного поля прямолинейного проводника с постоянным током. Если буравчик ввёртывается по направлению тока, то направление его вращения определяет направление магнитных силовых линий… … Большая политехническая энциклопедия

Свойства растворов, которые зависят только от концентрации частиц в растворе и не зависят от природы растворенного вещества, называются коллигативными.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

К коллигативным свойствам растворов относятся:

· давление насыщенного пара растворителя над раствором;

· температура замерзания (кристаллизации) раствора;

· температура кипения раствора;

· осмотическое давление.

Коллигативные свойства разбавленных растворов могут быть описаны количественно и выражены в виде законов.

При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. При растворении в жидкости какого-либо вещества это давление понижается. Закон Рауля (1887г): относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворённого вещества:

N= (P о - P) / P о,

где N - мольная доля растворённого вещества; P 0 - давление насыщенного пара растворителя над чистым растворителем (кПа), P - давление насыщенного пара растворителя над раствором (кПа).

Рауль установил, что разбавленные растворы имеют более высокую температуру кипения по сравнению с температурой кипения чистого растворителя и более низкую температуру замерзания по сравнению с температурой замерзания чистого растворителя.

Понижение температуры (Δt зам) замерзания раствора:

Δt зам = K·C m ,

где К - криоскопическая постоянная растворителя, C m

t зам(р-ра) = t зам(р-ля) - Δt зам

Криоскопия - метод исследования жидких растворов нелетучих веществ, основанный на измерении понижения температуры замерзания раствора по сравнению с температурой замерзания чистого растворителя.

Повышение температуры кипения (Δt кип) раствора:

Δt кип = E·C m ,

где Е - эбуллиоскопическая постоянная растворителя, C m - моляльная концентрация раствора.

t кип(р-ра) = t кип(р-ля) + Δt кип

Эбуллиоскопия - метод изучения жидких растворов нелетучих веществ, основанный на измерении повышения температуры кипения раствора по сравнению с температурой кипения чистого растворителя.

Криоскопическая постоянная К и эбуллиоскопическая постоянная Е – табличные величины, для воды К(Н 2 О)=1,86кг∙К/моль, Е(Н 2 О)=0,52 кг∙К/моль.

Диффузия – самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации. При диффузии частицы растворителя и растворенного вещества диффундируют в противоположных направлениях, поэтому является встречным, двусторонним процессом. Односторонняя диффузия растворителя в раствор через полупроницаемую перегородку называется осмосом. Объём раствора в результате осмоса увеличивается, при этом возникает давление на стенки сосуда, в котором находится раствор. Это давление называется осмотическим (P осм, кПа). Закон Вант-Гоффа:


P осм = С м ·R·T,

где С м – молярная концентрация, R – универсальная газовая постоянная (8,31 Дж/моль∙К), T – температура, К.

С М =m 1 /М 1 ∙V, тогда P осм =m 1 R·T/М 1 ∙V

Однако водные растворы электролитов (солей, кислот, оснований) не подчиняются законам Рауля и Вант-Гоффа - они имеют более повышенные точки кипения и более пониженные точки замерзания, завышенное осмотическое давление, чем следует из расчетов по соответствующим формулам. Примером может служить 0,1М раствор хлористого натрия. Расчетное понижение температуры замерзания этого раствора по формуле Рауля должно быть равно 0,186°С, а определенное опытным путем оказалось равным 0,34° С, т. е. опытная величина превышает расчетную почти в два раза.

Для того чтобы свойства растворов электролитов удовлетворительно описывались законами Вант-Гоффа и Рауля, в соответствующие расчетные формулы был введен поправочный коэффициент i, так называемый изотонический коэффициент или коэффициент Вант-Гоффа.

Если для неэлектролитов: P осм = C М ∙R∙T, Δtзам = K∙Cm, Δtкип = Е∙Cm, то для растворов электролитов: P осм = i∙C М ∙R∙T, Δtзам = i∙K∙Cm, Δtкип = i∙Е∙Cm

Изотонический коэффициент показывает, во сколько раз реальное число частиц растворенного вещества больше, чем теоретически ожидаемое (если предполагать, что вещество в растворе присутствует только в виде молекул). Для идеальных растворов электролитов i >1.

Между изотоническим коэффициентом i и степенью диссоциации α существует определенная связь:

1+α(n -1) или α=(i-1)/( n-1),

где n - число ионов, на которые распадается при диссоциации молекула электролита (для KCl n=2, для ВаС1 2 и Na 2 SO 4 n=3 и т. д.).

Изотонические растворы – имеют равное осмотическое давление. Гипертонические растворы – имеют большее осмотическое давление по сравнению с другим раствором. Гипотонические растворы – имеют меньшее осмотическое давление по сравнению с другим раствором.

Осмотическое давление биологических жидкостей в различных организмах неодинаково, так осмотическое давление у лягушек несколько ниже, чем у человека, а у некоторых морских животных, обитающих в воде со значительным содержанием солей оно выше. Известно, что в тканях растений, всасывающих воду из почвы, осмотическое давление достигает 5-20 атм, а у некоторых растений пустынь и солончаков - даже 170 атм (1 атм=101,3кПа).

ВАНТ-ГОФФА ПРАВИЛО. Почти все химические реакции при повышении температуры идут быстрее. Зависимость скорости реакции от температуры описывается уравнением Аррениуса:

k = A e –E a/RT , где k константа скорости реакции, А не зависящая от температуры константа (ее называют предэкспоненциальным множителем), Е а энергия активации, R газовая постоянная, Т абсолютная температура. В школьных учебниках зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф . Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 2 4 раза. Математически эту зависимость можно выразить уравнением v 2 v 1 = g (T 2 T 1)/10 , где v 1 и v 2 скорости реакции при температурах Т 1 и Т 2 ; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т 2 Т 1 = 50 о v 2 /v 1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т 1 и Т 2 , а только от их разности.

Однако из уравнения Аррениуса следует, что температурный коэффициент реакции зависит как от энергии активации, так и от абсолютной температуры. Для данной реакции с определенным значением Е а ускорение при повышении температуры на 10° будет тем больше, чем ниже температура. Это почти очевидно и без расчетов: повышение температуры от 0 до 10° С должно сказаться на скорости реакции значительно сильнее, чем такое же повышение температуры, например, от 500 до 510° С.

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.

Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО 2 + ОН® НСО 3 –) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С 2 Н 5 Вr ® С 2 Н 4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110 o С в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C 2 H 6 ® H 2 + C 2 H 5 была изучены в широком температурном интервале – от 300 до 1100 К (27–827° С). Для этой реакции E а = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300–310 K и только в 1,04 раза в интервале 1090–1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C 2 H 4 ® C 2 H 5 энергия активации мала (E а = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?

Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v 1 и v 2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = v T +10/v T = е –Е а/R (Т +10)/е –Е а/ = е (Е а/R ) . Логарифмироване этого уравнения дает: lng = (E а /R ), откуда Е а = R lng T (T + 10)/10 = 0,83lngT (T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Е а = 0,58Т (Т + 10), при g = 4 получаем Е а = 1,16Т (Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g < 2, тогда как выше верхней ветви g > 4.

Если посмотреть, какие реакции «укладываются» в указанную довольно узкую область, то окажется, что все эти реакции идут не слишком быстро и не слишком медленно, а с удобной для измерения (при данной температуре) скоростью. Скорость только таких реакций и могли изучать химики во времена Вант-Гоффа. Например, если энергия активации была невелика (меньше 50 кДж/моль), то такая реакция при комнатной температуре заканчивалась за 1 2 секунды; поэтому для изучения ее кинетики следовало значительно понизить температуру, чтобы реакция проходила не быстрее, чем за 10 20 минут. Только в этом случае химики 19 в. успевали отбирать пробы по ходу реакции и анализировать изменение в них концентрации реагентов. Других способов изучения скорости реакции в то время не было. Если это не удавалось (например, водный раствор замерзал), то скорость такой реакции не изучали. Если же энергия активации реакции была велика и при комнатной температуре она шла слишком медленно (многие сутки, или даже недели), то температуру повышали, чтобы реакция шла с удобной для измерения скоростью. И здесь были свои ограничения – например, раствор мог закипеть, т.е. в любом случае исследователи фактически «подстраивали» изучаемую реакцию под область между двумя параболами.

Сейчас химики имеют возможность с помощью различных приборов экспериментально изучать и очень быстрые (идущие в микросекундной области), и очень медленные реакции, для которых температурный коэффициент может быть значительно меньше 2 или значительно больше 4. Поэтому правило Вант-Гоффа, которое, в отличие от уравнения Аррениуса , не имеет четкого физического смысла, представляет лишь чисто исторический интерес и в современной науке не используется. В подавляющем большинстве учебников и монографий по химической кинетике, а также в 5-томной Химической Энциклопедии это правило даже не упоминается. И, тем не менее, если изучаемая реакция идет с удобной для измерения скоростью, например, заканчивается за 30 40 мин, а энергия активации ее еще не измерена, то для предварительной грубой оценки зависимости скорости такой реакции от температуры можно использовать правило Вант-Гоффа. Поэтому это правило приводится во всех школьных учебниках химии.

Илья Леенсон

Если привести в соприкосновение два раствора с разными концентрациями, то молекулы растворителя и растворенного вещества будут диффундировать в противоположных направлениях, преимущественно в том направлении, где их концентрация ниже. Такая двусторонняя диффузия приведет к выравниванию концентраций (С 1 =С 2).

Рассмотрим особый случай односторонней диффузии, когда на границе между раствором и растворителем или между двумя растворами различной концентрации находится перегородка, проницаемая для молекул растворителя и задерживающая частицы растворенного вещества.

Представим себе, что в сосуд с водой опущен цилиндр с раствором, нижняя часть которого изготовлена из материала, пропускающего растворитель, но не пропускающего частицы растворенного вещества (полупроницаемая перегородка). Получается неравновесная система, т.к. если в воде N 1 =1, то в растворе мольная доля растворителя – воды N 1 <1.

Поэтому в системе начнется самопроизвольный процесс выравнивания концентраций. Молекулы растворителя воды будут переходить в цилиндр с раствором (переход растворенного вещества исключен).

Односторонняя диффузия растворителя в раствор через полупроницаемую перегородку называется осмосом.

На рис. 8.4 представлен простейший прибор для наблюдения осмоса, называемый осмометром. В результате осмоса раствор поднимается по цилиндру вверх за счет того, что число молекул воды, проникающих в единицу времени в направлении от растворителя к раствору, больше числа молекул воды, проходящих через мембрану в обратном направлении. Через некоторое время подъем жидкости в цилиндре прекратится и ее уровень достигнет высоты h над уровнем жидкости в стакане. Столб жидкости с высотой h образовался за счет осмоса. Осмос прекращается тогда, когда скорости перехода молекул растворителя через полупроницаемую перегородку в обоих направлениях становятся одинаковыми.

Для количественной характеристики осмотических свойств растворов по отношению к чистому растворителю вводится понятие об осмотическом давлении. Осмотическое давление (Р осм) – мера силы, приходящейся на единицу площади поверхности и заставляющей проникать молекулы растворителя через полупроницаемую перегородку или , другими словами, давление, которое нужно приложить к раствору, чтобы осмос прекратился. Осмотическое давление в растворе не существует, оно проявляется только тогда, когда раствор отделен от растворителя полупроницаемой мембраной.



Осмотическое давление Р осм зависит от температуры раствора и его концентрации и не зависит от природы растворителя и растворенного вещества. В 1886 г. голландский химик Вант-Гофф показал, что для разбавленных растворовнеэлектролитов зависимость осмотического давления от температуры и концентрации выражается уравнением (закон Вант-Гоффа):

где Р осм – осмотическое давление раствора, кПа; С – молярная концентрация растворенного неэлектролита, моль/л; Т – абсолютная температура, К.

Заменим величину С отношением ; , где m – масса растворенного вещества, г; M – молярная масса растворенного вещества, г/моль; V – объем раствора, л. Подставим это отношение в выражение закона Вант-Гоффа:

Формально уравнение Вант-Гоффа аналогично уравнению состояния идеального газа и выражает сходство в поведении разбавленных растворов неэлектролитов с идеальными газами. Из вышеприведенного уравнения выразим величину М:

Данное выражение позволяет определить молекулярную массу растворенного вещества, измерив осмотическое давление в осмометре.

Явление осмоса играет важную роль в жизни растений, животных и человека. Стенки растительных клеток живых организмов представляют собой полупроницаемые мембраны, через которые свободно проходят молекулы воды, но почти полностью задерживаются вещества, растворенные в клеточном соке. Поэтому осмос служит причиной тургора (состояние напряжения) и плазмолиза (сморщивание) клеток. С ним связаны процессы усвоения пищи и обмена веществ. У высших животных и человека осмотическое давление в разных органах и тканях несколько меньше 8 атм и постоянно. Осмотическое давление широко встречается в природе, например, в скважинах осмотическое давление рвет породы и т.д.

Растворы электролитов

Свойства растворов электролитов. При изучении свойств водных растворов кислот, щелочей и солей, относящихся к электролитам, было установлено, что они не подчиняются законам Рауля и Вант-Гоффа. Они имеют бо́льшие, чем вычисленные по соответствующим формулам, понижениедавления насыщенного пара растворителя над раствором ( Р), повышение температуры кипения ( t кип) и понижение температуры замерзания ( t зам), осмотическое давление (Р осм). Чтобы распространить на растворы электролитов расчетные формулы законов Рауля и Вант-Гоффа, в них был введен поправочный коэффициент i , называемый также изотоническим коэффициентом (ввел Вант-Гофф – 1887г.). Тогда

∆t кип =i К эб · С m ;

∆t зам =i К кр ·С m ;

Изотонический коэффициент показывает, во сколько раз экспериментальные величины , , , больше теоретических, т.е. вычисленных по формулам для растворов неэлектролитов:

Коэффициент i показывает меру отклонения растворов электролитов от закономерностей для неэлектролитов;он всегда больше единицы (i >1), стремится к целому числу.

Электролитическая диссоциация. Наблюдаемые отклонения для растворов электролитов, а также их способность проводить электрический ток были объяснены на основе теории электролитической диссоциации, созданной шведским ученым Аррениусом (1883 г.).

Основные положения теории электролитической диссоциации:

1.Электролитическая диссоциация – распад молекул электролитов на ионы в среде растворителя.

2. Электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы.

3. Под действием электрического тока положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Поэтому первые называют катионами, вторые – анионами.

4. Сумма положительных зарядов в растворе равна сумме отрицательных зарядов, поэтому раствор в целом электронейтрален.

5. Ионы представляются как точечные заряды, взаимодействия между которыми отсутствуют (подобны идеальным газовым смесям).

6. Диссоциация – процесс обратимый, поскольку одновременно протекают процесс распада молекул на ионы (диссоциация) и процесс соединения ионов в молекулы (ассоциация). Например, уравнение диссоциации молекулы электролита КА на катион К + и анион Аˉ записывается так:

КА D К + + Аˉ.

Согласно теории Аррениуса, вследствие диссоциации электролитов на ионы, с одной стороны, увеличивается общее число частиц в растворе, а следовательно, возрастают понижение давления пара и изменение температуры кипения и замерзания, с другой стороны – ионы обусловливают способность раствора проводить электрический ток.

Физический смысл изотонического коэффициента i состоит в увеличении общего числа частиц в растворе за счет диссоциации растворенного вещества на ионы.

Однако теория Аррениуса рассматривала ионы как свободные не зависимые от молекул растворителя частицы, не учитывала всей сложности явлений в растворах. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И. А. Каблукову, впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теории Аррениуса и Менделеева.

В создании современной физико-химической теории растворов большую роль сыграли работы русских ученых Д. И. Менделеева, И. А. Каблукова, Д.П. Коновалова, В. А. Кистяковского и др.

Сольватация (гидратация). По современным представлениям причиной электролитической диссоциации является физико-химическое взаимодействие между полярными молекулами и ионами растворяемого вещества и полярными молекулами растворителя (сольватация), приводящее к образованию соединений сольватов (комплексов). В случае, если вода – растворитель, говорят о гидратации и образовании гидратов.

Взаимодействие между молекулами и ионами растворяемого вещества и молекулами воды может состоять из нескольких процессов, протекающих последовательно или одновременно: молекулярной диссоциации, образования сольватов, ионизации и электролитической диссоциации. В зависимости от типа растворяющихся веществ число стадий может изменяться. Так, в случае ионных кристаллов стадии образования гидратов и электролитическая диссоциация совмещены.

В случае ассоциированных веществ первой стадией является молекулярная диссоциация растворенного вещества. Процесс молекулярной диссоциации происходит вследствие химического взаимодействия между молекулами растворяемого вещества КА, (m+n) молекулами воды с образованием гидратированной молекулы КА(m+n)Н 2 О:

КА + (m+n)Н 2 О D КА(m+n)Н 2 О. (а)

Образующийся гидрат диссоциирует на гидратированные ионы (стадия электролитической диссоциации):

КА(m+n)Н 2 О D К + ·mН 2 О + А – ·nН 2 О. (б) Схематично процесс гидратации, на примере реакций (а) и (б), представлен

На рис. 8.5.

Процесс гидратации может остановиться на любой стадии. Если процесс гидратации останавливается на стадии (а), то система представляет собой раствор неэлектролита. Она характеризуется отсутствием ионов в растворе и соответственно не обладает ионной электрической проводимостью. Если процесс гидратации протекает до стадии (б), то система является раствором электролита, т.е. имеет место электролитическая диссоциация с образованием ионов. Уравнение электролитической диссоциации можно записать, опустив промежуточные стадии, указав лишь начальные и конечные продукты реакции:

КА + (m+n)Н 2 О D К + ·mН 2 О + А – ·nН 2 О.

Особенностью гидратов (сольватов) как химических соединений является то, что коэффициенты n и m меняются с изменением концентрации, температуры и других параметров раствора. Поэтому приведенные формулы гидратов (сольватов) не отражают их истинного стехиометрического состава, и в уравнениях химических реакций гидратированные ионы обычно записывают, например, К + ·aq, А – · aq.

Однако часто в подобных уравнениях опускают молекулы растворителя, записывая их в таком виде:

КА D К + + А – .

Электролитическая диссоциация протекает самопроизвольно (∆G<0). Понижение изобарно-изотермического потенциала обусловлено образованием гидратированных (сольватированных) ионов. Энергии гидратации (сольватации) достаточно для разрушения химических связей в молекулах или ионных кристаллах.

Механизм электролитической диссоциации. Главная причина диссоциации – поляризационное взаимодействие полярных молекул растворителя с молекулами растворенного вещества. Например, молекула воды – полярна, ее дипольный момент μ=1,84 D, т.е. она обладает сильным поляризующим действием. В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по-разному. Наиболее типичны два случая:

1. Растворенное вещество с ионной связью (NaCl, KCl и т.д.). «Молекулы» таких веществ уже состоят из ионов. При их растворении полярные молекулы воды (диполи) будут ориентироваться к ионам своими противоположными концами. Между ионами и диполями воды возникают силы взаимного притяжения (ион-дипольное взаимодействие), в результате связь между ионами ослабевает и они в гидратированном виде переходят в раствор (рис. 8.6). В рассматриваемом случае одновременно с растворением происходит диссоциация молекул. Вещества с ионной связью диссоциируют легче всего.

2. Растворенное вещество с полярной ковалентной связью (например, НCl, H 2 SO 4 , H 2 S и др.). Здесь также вокруг каждой полярной молекулы вещества ориентируются соответствующим образом диполи воды с образованием гидратов (рис.8.5). В результате такого диполь-дипольного взаимодействия связующее электронное облако (электронная пара) практически полностью сместится к атому с большей электроотрицательностью, при этом полярная молекула превращается в ионную (стадия ионизации молекулы) и затем распадается на ионы, которые переходят в раствор в гидратированном виде. Диссоциация может быть полной или частичной – все зависит от степени полярности связей в молекуле.

Различие между рассмотренными случаями заключается в том, что в случае ионной связи ионы существовали в кристалле, а в случае полярной – они образуются в процессе растворения. Соединения, содержащие одновременно и ионные, и полярные связи, сначала диссоциируют по ионным, а затем по ковалентным полярным связям. Например, гидросульфат натрия NаНSО 4 полностью диссоциирует по связи Na-O, частично – по связи H-O и практически не диссоциирует по малополярным связям серы с кислородом.

Таким образом, при растворении диссоциируют только соединения с ионной и ковалентной полярной связью и только в полярных растворителях.

Степень диссоциации. Сильные и слабые электролиты. Количественной характеристикой электролитической диссоциации является степень диссоциации электролита в растворе. Эта характеристика была введена Аррениусом. Степень диссоциации – a - это отношение числа молекул N, распавшихся на ионы, к общему числу молекул растворенного электролита N 0:

α выражают в долях единицы или в %.

По степени диссоциации электролиты делят на сильные или слабые.

При растворении в воде сильные электролиты диссоциируют практически полностью, процесс диссоциации в них необратим. У сильных электролитов степень диссоциации в растворах равна единице (α=1) и почти не зависит от концентрации раствора. В уравнениях диссоциации сильных электролитов ставят знак “=” или “ ”. Например, уравнение диссоциации сильного электролита сульфата натрия имеет вид

Nа 2 SО 4 = 2Nа + + SО 4 2- .

К сильным электролитам в водных растворах относятся почти все соли, основания щелочных и щелочноземельных металлов, кислоты: H 2 SO 4 , HNO 3 , HCl, HBr, HI, HСlO 4 , HClO 3 , HBrO 4 , HBrO 3 , HIO 3 , H 2 SeO 4 , HMnO 4 , H 2 MnO 4 и т.д.

К слабым электролитам относятся электролиты, степень диссоциации которых в растворах меньше единицы (α<1) и она уменьшается с ростом концентрации.

Процесс диссоциации слабых электролитов протекает обратимо до установления равновесия в системе между нераспавшимися молекулами растворенного вещества и его ионами. В уравнениях диссоциации слабых электролитов ставят знак «обратимости» (D). Например, уравнение диссоциации слабого электролита гидроксида аммония имеет вид

NН­ 4 ОН D NН 4 + + ОН -

К слабым электролитам относят воду, почти все органические кислоты (муравьиную, уксусную, бензойную и т.д.), ряд неорганических кислот (H 2 SO 3 , HNO 2 , H 2 CO 3 , H 3 AsO 4 , H 3 AsO 3 , H 3 BO 3 , H 3 PO 4 , H 2 SiO 3 , H 2 S, H 2 Se, H 2 Te, HF, HCN, HCNS), основания p-, d-, f- элементов (Al(OH) 3 , Cu(OH) 2 , Fe(OH) 2 и т.д.), гидроксид аммония, гидроксиды магния и бериллия, некоторые соли (CdI 2 , CdCl 2 , HgCl 2 , Hg(CN) 2 , Fe(CNS) 3 и т.д.).

Численное значение степени электролитической диссоциации зависит от различных факторов:

1. Природа растворителя.

Это связано с величиной диэлектрической проницаемости растворителя ε. Как следует из закона Кулона, сила (f) электростатического притяжения двух разноименно заряженных частиц зависит не только от величины их зарядов (q 1 и q 2), расстояния между ними r, но и от природы среды, в которой взаимодействуют заряженные частицы, т.е. от ε:

Например, при 298 К ε(Н 2 О) = 78,25, а ε(С 6 Н 6) = 2,27. Такие соли, как KCl, LiCl, NaCl и др., в воде полностью диссоциированы на ионы, т.е. ведут себя как сильные электролиты; в бензоле эти соли диссоциируют лишь частично, т.е. являются слабыми электролитами. Таким образом, одни и те же вещества могут проявлять различную способность к диссоциации в зависимости от природы растворителя.

2. Температура.

У сильных электролитов с повышением температуры степень диссоциации уменьшается, у слабых – при повышении температуры до 60°С α увеличивается, а затем начинает уменьшаться.

3. Концентрация раствора.

Если рассматривать диссоциацию как равновесный химический процесс, то в соответствии с принципом Ле Шателье добавление растворителя (разбавление водой), как правило, увеличивает количество продиссоциированных молекул, что приводит к увеличению α. Процесс образования молекул из ионов в результате разбавления затрудняется: для образования молекулы должно произойти столкновение ионов, вероятность которого с разбавлением уменьшается.

4. Наличие одноименных ионов.

Добавление одноименных ионов уменьшает степень диссоциации, что также согласуется с принципом Ле Шателье. Например, в растворе слабой азотистой кислоты при электролитической диссоциации устанавливается равновесие между недиссоциированными молекулами и ионами:

НNО 2 D Н + + NО 2 ˉ .

При введении в раствор азотистой кислоты нитрит-ионов NO 2 ˉ (прибавлением раствора нитрита калия КNО 2) равновесие сместится влево, следовательно, степень диссоциации α уменьшится. Аналогичный эффект даст и введение в раствор ионов Н + .

Необходимо отметить, что не следует путать понятия «сильный электролит» и «хорошая растворимость» . Например, растворимость СН 3 СООН в Н 2 О неограниченная, однако уксусная кислота относится к слабым электролитам ( = 0,014 в 0,1 М растворе). С другой стороны, ВаSО 4 – малорастворимая соль (при 20°С растворимость меньше 1 мг в 100 г Н 2 О), но относится к сильным электролитам, так как все молекулы, перешедшие в раствор, распадаются на ионы Ва 2+ и SО 4 2- .

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

где v(T2) и v(T1) - скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

(3.7)

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

γ -температурный коэффициент скорости реакции.

Пример 8. На сколько градусов надо повысить температуру, что бы скорость реакции возросла в 27 раз? Температурный коэффициент реакции равен 3.

Решение. Используем выражение (3.6):

Получаем: 27 = , = 3, DТ = 30.

Ответ: на 30 градусов.

Скорость реакции и время, за которое она протекает, связаны обратно пропорциональной зависимостью: чем больше v, тем

меньше t. Математически это выражается соотношением

Пример 9. При температуре 293 К реакция протекает за 2 мин. За какое время будет протекать эта реакция при температуре 273 К, если γ = 2.

Решение. Из уравнения (3.8) следует:

.

Используем уравнение (3.6), поскольку Получим:

мин.

Ответ: 8 мин.

Правило Вант-Гоффа применимо для ограниченного числа химических реакций. Влияние температуры на скорость процес-сов чаще определяют по уравнению Аррениуса.

Уравнение Аррениуса . В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

где k - константа скорости реакции;

k0 - предэксноненциальный множитель;

е - основание натурального логарифма;

Ea - постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 - 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации - некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

. (3.10)

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Изменение скорости реакции в присутствии катализатора выражается следующим уравнением:

, (3.11)

где vкат, и Ea(кат) - скорость и энергия активации химической реакции в присутствии катализатора;

v и Еа - скорость и энергия активации химической реакции без катализатора.

Пример 10 . Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, с катализатором - 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при температуре 298 К? Решение. Воспользуемся уравнением (3.11). Подставляя в уравнение данные