Чему равна степень окисления. Как определить степень окисления атома химического элемента

Степень окисления – это условный заряд атома в молекуле, он получает атом в результате полного принятия электронов, его вычисляют из предположения, что все связи представляют собой ионный характер. Как определить степень окисления?

Определение степени окисления

Существуют заряженные частицы ионы, положительный заряд которых равняется количеству электронов, получаемых от одного атома. Отрицательный заряд иона равняется числу электронов, принимаемых одним атомом химического элемента. К примеру, запись такого элемента как Ca2+ значит, что атомы элементов потеряли одного, двух или же трех элементов. Чтобы найти состав ионных соединений и соединений молекул нам необходимо знать, как определить степень окисления элементов. Степени окислений бывают отрицательными, положительными и нулевыми. Если учитывать числа атомов, то алгебраическая степень окисления в молекуле равна нулю.

Чтобы определить степень окисления элемента нужно руководствоваться определёнными знаниями. Например, в соединениях металлов степень окисления положительная. А высшая степень окисления соответствует номеру группы периодической системы, где и находится элемент. У металлов степени окисления могут быть положительными и отрицательными. Это будет зависеть от того фактора, каким именно атомом соединен металл. Например, если соединен с атомом металла, то тогда степень будет отрицательной, если же соединен с неметаллом, то степень будет положительная.

Отрицательную же высшую степень окисления металла определить можно вычитанием из цифры восемь номер группы, где находится необходимый элемент. Как правило, она бывает равна числу электронов, находящихся на внешнем слое. Число этих электронов тоже соответствует номеру группы.

Как рассчитать степень окисления

В большинстве случаев степень окисления атома конкретного элемента не совпадает с числом связей, которые он образует, то есть она не равна валентности этого элемента. Наглядно это можно увидеть на примере органических соединений.

Напомню, валентность углерода в органических соединениях равняется 4 (т.е образует 4 связи), но степень окисления углерода, например, в метаноле CH 3 OH равна -2, в CO 2 +4, в CH4 -4, в муравьиной кислоте HCOOH +2. Валентность измеряется числом ковалентных химических связей, включая те, которые возникли по донорно-акцепторному механизму.

При определении степени окисления атомов в молекулах, электроотрицательный атом, при смещении в свою сторону одной электронной пары, приобретает заряд -1, если же две электронные пары то -2 будет заряд. На степень окисления не влияет связь между одинаковыми атомами. Например:

  • Связь атомов C-C равняется их нулевой степени окисления.
  • Связь C-H – здесь, углероду как наиболее электроотрицательному атому будет соответствовать заряд -1.
  • Связь C-O заряд углерода, как менее электроотрицательный, будет равняться +1.

Примеры определения степени окисления

  1. В такой молекуле как CH 3Cl три связи C-HC). Таким образом, степень окисления атома углерода в данном соединении будет равна:-3+1=-2.
  2. Найдем степень окисления атомов углерода в молекуле уксусного альдегида Cˉ³H3-C¹O-H. В данном соединении три связи C-H будут давать общий заряд на атоме C, который равен (Cº+3e→Cˉ³)-3. Двойная же связь C=O (здесь кислород будет забирать электроны у атома углерода, т.к кислород более электроотрицательный) дает заряд на атоме C, он равен +2 (Cº-2e→C²), связь же C-H заряд -1, значит общий заряд на атоме C равняется: (2-1=1)+1.
  3. Теперь найдем степень окисления в молекуле этанола: Cˉ³H-Cˉ¹H2-OH. Здесь три связи C-H дадут общий заряд на атоме C, он равен (Cº+3e→Cˉ³)-3. Две связи C-H дадут заряд на атоме C, который будет равен -2, связь же C→O даст заряд +1, значит общий заряд на атоме C: (-2+1=-1)-1.

Теперь Вы знаете, как определить степень окисления элемента. Если Вы имеете хотя бы базовые знания по химии, то для Вас данная задача будет не проблемой.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент

Степень окисления практически во всех соединениях

Исключения

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например:
кислород O -2 Пероксиды водорода и металлов:

Фторид кислорода —

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = № группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF 2). Расставим известные степени окисления:

Обозначим степень окисления серы как x :

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Решим его:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH 4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH 4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH 4 + и анионами Cr 2 O 7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y :

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать .

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных () орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH 3), азотистой кислоты (HNO 2), треххлористого азота (NCl 3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор() предоставляет ее другому атому с вакантной () орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d -подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO 3 или оксида азота N 2 O 5 ? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O 3 , бензола C 6 H 6 и т.д.

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d -подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d -подуровня, распаривание электронов s и p- орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H 2 S.

Как мы видим, у атома серы на внешнем уровне появляется d -подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p -подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO 2 , SF 4 , SOCl 2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s -подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO 3 , H 2 SO 4 , SO 2 Cl 2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип.

Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .

1. Степени окисления металлов в соединениях всегда положительные.

2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .

3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:

  • если с атомом металла, то степень окисления отрицательная;
  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.

4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Элементы с неизменными степенями окисления.

Элемент

Характерная степень окисления

Исключения

Гидриды металлов: LIH -1

Степенью окисления называют условный заряд частицы в предположении, что связь полностью разорвана (имеет ионных характер).

H - Cl = H + + Cl - ,

Связь в соляной кислоте ковалентная полярная. Электронная пара в большей степени смещена в сторону атома Cl - , т.к. он более электроотрицацельный элемент.

Как определить степень окисления?

Электроотрицательность - это способность атомов притягивать к себе электроны других элементов.

Степень окисления указывается над элементом: Br 2 0 , Na 0 , O +2 F 2 -1 , K + Cl - и т.д.

Она может быть отрицательной и положительной.

Степень окисления простого вещества (несвязанное, свободное состояние) равна нулю.

Степень окисления кислорода у большинстве соединений равна -2 (исключение составляют пероксиды Н 2 О 2 , где она равна -1 и соединения с фтором - O +2 F 2 -1 , O 2 +1 F 2 -1 ).

- Степень окисления простого одноатомного иона равна его заряду: Na + , Ca +2 .

Водород в своих соединениях имеет степень окисления равную +1 (исключения составляют гидриды - Na + H - и соединения типа C +4 H 4 -1 ).

В связях «металл-неметалл» отрицательную степень окисления имеет тот атом, который обладает большей электрооприцательностью (данные об элеткроотрицательности приведены в шкале Полинга): H + F - , Cu + Br - , Ca +2 (NO 3 ) - и т.д.

Правила определения степени окисления в химических соединениях.

Возьмем соединение KMnO 4 , необходимо определить степень окисления у атома марганца.

Рассуждения:

  1. Калий - щелочной металл, стоящий в I группе периодической таблицы , в связи с чем, имеет только положительную степень окисления +1.
  2. Кислород , как известно, в большинстве своих соединений имеет степень окисления -2. Данное вещество не является пероксидом, а значит, - не исключение.
  3. Составляет уравнение:

К + Mn X O 4 -2

Пусть Х - неизвестная нам степень окисления марганца.

Количество атомов калия - 1, марганца - 1, кислорода - 4.

Доказано, что молекула в целом электронейтральна, поэтому ее общий заряд должен быть равен нулю.

1*(+1) + 1*(X ) + 4(-2) = 0,

Х = +7,

Значит, степень окисления марганца в перманганате калия = +7.

Возьмем другой пример оксида Fe 2 O 3 .

Необходимо определить степень окисления атома железа.

Рассуждение:

  1. Железо - металл, кислород - неметалл, значит, именно кислород будет окислителем и иметь отрицательный заряд. Мы знаем, что кислород имеет степень окисления -2.
  2. Считаем количества атомов: железа - 2 атома, кислорода - 3.
  3. Составляем уравнение, где Х - степень окисления атома железа:

2*(Х) + 3*(-2) = 0,

Вывод: степень окисления железа в данном оксиде равна +3.

Примеры. Определить степени окисления всех атомов в молекуле.

1. K 2 Cr 2 O 7 .

Степень окисления К +1 , кислорода О -2 .

Учитывая индексы: О=(-2)×7=(-14), К=(+1)×2=(+2).

Т.к. алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, то число положительных степеней окисления равно числу отрицательных. Степени окисления К+О=(-14)+(+2)=(-12).

Из этого следует, что у атома хрома число положительных степеней равно 12, но атомов в молекуле 2, значит на один атом приходится (+12):2=(+6). Ответ: К 2 + Cr 2 +6 O 7 -2 .

2. (AsO 4) 3- .

В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е. - 3. Составим уравнение: х+4×(- 2)= - 3 .

Ответ: (As +5 O 4 -2) 3- .

Задача по определению степени окисления может оказаться как простой формальностью, так и сложной головоломкой. В первую очередь, это будет зависеть от формулы химического соединения, а также наличия элементарных знаний по химии и математике.

Зная основные правила и алгоритм последовательно-логичных действий, о которых пойдет речь в данной статье, при решении задач подобного типа, каждый с легкостью сможет справиться с этим заданием. А потренировавшись и научившись определять степени окисления разноплановых химических соединений, можно смело браться за уравнивание сложных окислительно-восстановительных реакций методом составления электронного баланса.

Понятие степени окисления

Чтобы научиться определять степень окисления, для начала необходимо разобраться, что это понятие означает?

  • Степень окисления применяют при записи в окислительно-восстановительных реакциях, когда происходит передача электронов от атома к атому.
  • Степень окисления фиксирует количество перенесенных электронов, обозначая условный заряд атома.
  • Степень окисления и валентность зачастую тождественны.

Данное обозначение пишется сверху химического элемента, в его правом углу, и представляет собой целое число со знаком «+» или «-». Нулевое значение степени окисления знака не несет.

Правила определения степени окисления

Рассмотрим основные каноны определения степени окисления:

  • Простые элементарные вещества, то есть те, которые состоят из одного вида атомов, всегда будут иметь нулевую степень окисления. Например, Na0, H02, P04
  • Существует ряд атомов, имеющих всегда одну, постоянную, степень окисления. Приведенные в таблице значения лучше запомнить.
  • Как видно, исключение бывает лишь у водорода в соединении с металлами, где он приобретает не свойственную ему степень окисления «-1».
  • Кислород также принимает степень окисления «+2» в химическом соединении с фтором и «-1» в составах перекисей, надперекисей или озонидов, где атомы кислорода соединены друг с другом.


  • Ионы металлов имеют несколько значений степени окисления (причем только положительные), поэтому ее определяют по соседним элементам в соединении. Например, в FeCl3, хлор имеет степень окисления «-1», у него 3 атома, значит умножаем -1 на 3, получаем «-3». Чтобы в сумме степеней окисления соединения получась «0», железо должно иметь степень окисления «+3». В формуле FeCl2, железо, соответственно, изменит свою степень на «+2».
  • Математически суммируя степени окисления всех атомов в формуле (с учетом знаков), всегда должно получаться нулевое значение. Например, в соляной кислоте H+1Cl-1 (+1 и -1 = 0), а в сернистой кислоте H2+1S+4O3-2(+1 * 2 = +2 у водорода,+4 у серы и -2 * 3 = – 6 у кислорода; в сумме +6 и -6 дают 0).
  • Степень окисления одноатомного иона будет равна его заряду. Например: Na+, Ca+2.
  • Наивысшая степень окисления, как правило, соотносится с номером группы в периодической системе Д.И.Менделеева.


Алгоритм действий определения степени окисления

Порядок нахождения степени окисления не сложен, но требует внимания и выполнения определенных действий.

Задача: расставить степени окисления в соединении KMnO4

  • Первый элемент – калий, имеет постоянную степень окисления «+1».
    Для проверки можно посмотреть в периодическую систему, где калий находится в 1 группе элементов.
  • Из оставшихся двух элементов, кислород, как правило, принимает степень окисления «-2».
  • Получаем следующую формулу: К+1MnхO4-2. Остается определить степень окисления марганца.
    Итак, х – неизвестная нам степень окисления марганца. Теперь важно обратить внимание на количество атомов в соединении.
    Количество атомов калия – 1, марганца – 1, кислорода – 4.
    С учетом электронейтральности молекулы, когда общий (суммарный) заряд равен нулю,

1*(+1) + 1*(х) + 4(-2) = 0,
+1+1х+(-8) = 0,
-7+1х = 0,
(при переносе меняем знак)
1х = +7, х = +7

Таким образом, степень окисления марганца в соединении равна «+7».

Задача: расставить степени окисления в соединении Fe2O3.

  • Кислород, как известно, имеет степень окисления «-2» и выступает окислителем. С учетом количества атомов (3), в сумме у кислорода получается значение «-6» (-2*3= -6), т.е. умножаем степень окисления на количество атомов.
  • Чтобы уравновесить формулу и привести к нулю, 2 атома железа будут иметь степень окисления «+3» (2*+3=+6).
  • В сумме получаем ноль (-6 и +6 = 0).

Задача: расставить степени окисления в соединении Al(NO3)3.

  • Атом алюминия – один и имеет постоянную степень окисления «+3».
  • Атомов кислорода в молекуле – 9 (3*3), степень окисления кислорода, как известно «-2», значит, умножая эти значения, получаем «-18».
  • Осталось уровнять отрицательные и положительные значения, определив таким образом степень окисления азота. -18 и +3, не хватает + 15. А учитывая, что имеется 3 атома азота, легко определить его степень окисления: 15 делим на 3 и получаем 5.
  • Степень окисления азота «+5», а формула будет иметь вид: Al+3(N+5O-23)3
  • Если сложно таким способом определять искомое значение, можно составлять и решать уравнения:

1*(+3) + 3х + 9*(-2) = 0.
+3+3х-18=0
3х=15
х=5


Итак, степень окисления – достаточно важное понятие в химии, символизирующее состояние атомов в молекуле.
Без знания определенных положений или основ, позволяющих правильно определять степень окисления, невозможно справиться с выполнением этой задачи. Следовательно, вывод один: досконально ознакомиться и изучить правила нахождения степени окисления, четко и лаконично представленные в статье, и смело двигаться дальше по нелегкой стезе химических премудростей.

Темы кодификатора ЕГЭ: Электроотрицательность. Степень окисления и валентность химических элементов.

Когда атомы взаимодействуют и образуют , электроны между ними в большинстве случаев распределяются неравномерно, поскольку свойства атомов различаются. Более электроотрицательный атом сильнее притягивает к себе электронную плотность. Атом, который притянул к себе электронную плотность, приобретает частичный отрицательный заряд δ — , его «партнер» — частичный положительный заряд δ+ . Если разность электроотрицательностей атомов, образующих связь, не превышает 1,7, мы называем связь ковалентной полярной . Если разность электроотрицательностей, образующих химическую связь, превышает 1,7, то такую связь мы называем ионной .

Степень окисления – это вспомогательный условный заряд атома элемента в соединении, вычисленный из предположения, что все соединения состоят из ионов (все полярные связи – ионные).

Что значит «условный заряд»? Мы просто-напросто договариваемся, что немного упростим ситуацию: будем считать любые полярные связи полностью ионными, и будем считать, что электрон полностью уходит или приходит от одного атома к другому, даже если на самом деле это не так. А уходит условно электрон от менее электроотрицательного атома к более электроотрицательному.

Например , в связи H-Cl мы считаем, что водород условно «отдал» электрон, и его заряд стал +1, а хлор «принял» электрон, и его заряд стал -1. На самом деле таких полных зарядов на этих атомах нет.

Наверняка, у вас возник вопрос — зачем же придумывать то, чего нет? Это не коварный замысел химиков, все просто: такая модель очень удобна. Представления о степени окисления элементов полезны при составлении классификации химических веществ, описании их свойств, составлении формул соединений и номенклатуры. Особенно часто степени окисления используются при работе с окислительно-восстановительными реакциями .

Степени окисления бывают высшие , низшие и промежуточные .

Высшая степень окисления равна номеру группы со знаком «плюс».

Низшая определяется, как номер группы минус 8.

И промежуточная степень окисления — это почти любое целое число в интервале от низшей степени окисления до высшей.

Например , для азота характерны: высшая степень окисления +5, низшая 5 — 8 = -3, а промежуточные степени окисления от -3 до +5. Например, в гидразине N 2 H 4 степень окисления азота промежуточная, -2.

Чаще всего степень окисления атомов в сложных веществах обозначается сначала знаком, потом цифрой, например +1, +2, -2 и т.д. Когда речь идет о заряде иона (предположим, что ион реально существует в соединении), то сначала указывают цифру, потом знак. Например : Ca 2+ , CO 3 2- .

Для нахождения степеней окисления используют следующие правила :

  1. Степень окисления атомов в простых веществах равна нулю;
  2. В нейтральных молекулах алгебраическая сумма степеней окисления равна нулю, для ионов эта сумма равна заряду иона;
  3. Степень окисления щелочных металлов (элементы I группы главной подгруппы) в соединениях равна +1, степень окисления щелочноземельных металлов (элементы II группы главной подгруппы) в соединениях равна +2; степень окисления алюминия в соединениях равна +3;
  4. Степень окисления водорода в соединениях с металлами ( — NaH, CaH 2 и др.) равна -1 ; в соединениях с неметаллами () +1 ;
  5. Степень окисления кислорода равна -2 . Исключение составляют пероксиды – соединения, содержащие группу –О-О-, где степень окисления кислорода равна -1 , и некоторые другие соединения (супероксиды, озониды, фториды кислорода OF 2 и др.);
  6. Степень окисления фтора во всех сложных веществах равна -1 .

Выше перечислены ситуации, когда степень окисления мы считаем постоянной . У всех остальных химических элементов степень окисления переменная , и зависит от порядка и типа атомов в соединении.

Примеры :

Задание : определите степени окисления элементов в молекуле дихромата калия: K 2 Cr 2 O 7 .

Решение: степень окисления калия равна +1, степень окисления хрома обозначим, как х , степень окисления кислорода -2. Сумма всех степеней окисления всех атомов в молекуле равна 0. Получаем уравнение: +1*2+2*х-2*7=0. Решаем его, получаем степень окисления хрома +6.

В бинарных соединениях более электроотрицательный элемент характеризуется отрицательной степенью окисления, менее электроотрицательный – положительной.

Обратите внимание, что понятие степени окисления – очень условно! Степень окисления не показывает реальный заряд атома и не имеет реального физического смысла . Это упрощенная модель, которая эффективно работает, когда нам необходимо, например, уравнять коэффициенты в уравнении химической реакции, или для алгоритмизации классификации веществ.

Степень окисления – это не валентность ! Степень окисления и валентность во многих случаях не совпадают. Например, валентность водорода в простом веществе Н 2 равна I, а степень окисления, согласно правилу 1, равна 0.

Это базовые правила, которые помогут Вам определить степень окисления атомов в соединениях в большинстве случаев.

В некоторых ситуациях вы можете столкнуться с трудностями при определении степени окисления атома. Рассмотрим некоторые из этих ситуаций, и разберем способы их разрешения:

  1. В двойных (солеобразных) оксидах степень у атома, как правило, две степени окисления. Например, в железной окалине Fe 3 O 4 у железа две степени окисления: +2 и +3. Какую из них указывать? Обе. Для упрощения можно представить это соединение, как соль: Fe(FeO 2) 2 . При этом кислотный остаток образует атом со степенью окисления +3. Либо двойной оксид можно представить так: FeO*Fe 2 O 3 .
  2. В пероксосоединениях степень окисления атомов кислорода, соединенных ковалентными неполярными связями, как правило, изменяется. Например, в пероксиде водорода Н 2 О 2 , и пероксидах щелочных металлов степень окисления кислорода -1, т.к. одна из связей – ковалентная неполярная (Н-О-О-Н). Другой пример – пероксомоносерная кислота (кислота Каро) H 2 SO 5 (см. рис.) содержит в составе два атома кислорода со степенью окисления -1, остальные атомы со степенью окисления -2, поэтому более понятной будет такая запись: H 2 SO 3 (O 2). Известны также пероксосоединения хрома – например, пероксид хрома (VI) CrO(O 2) 2 или CrO 5 , и многие другие.
  3. Еще один пример соединений с неоднозначной степенью окисления – супероксиды (NaO 2) и солеобразные озониды KO 3 . В этом случае уместнее говорить о молекулярном ионе O 2 с зарядом -1 и и O 3 с зарядом -1. Строение таких частиц описывается некоторыми моделями, которые в российской учебной программе проходят на первых курсах химических ВУЗов: МО ЛКАО, метод наложения валентных схем и др.
  4. В органических соединениях понятие степени окисления не очень удобно использовать, т.к. между атомами углерода существует большое число ковалентных неполярных связей. Тем не менее, если нарисовать структурную формулу молекулы, то степень окисления каждого атома также можно определить по типу и количеству атомов, с которыми данный атом непосредственно связан. Например, у первичных атомов углерода в углеводородах степень окисления равна -3, у вторичных -2, у третичных атомов -1, у четвертичных — 0.

Потренируемся определять степень окисления атомов в органических соединениях. Для этого необходимо нарисовать полную структурную формулу атома, и выделить атом углерода с его ближайшим окружением — атомами, с которыми он непосредственно соединен.

  • Для упрощения расчетов можно использовать таблицу растворимости – там указаны заряды наиболее распространенных ионов. На большинстве российских экзаменов по химии (ЕГЭ, ГИА, ДВИ) использование таблицы растворимости разрешено. Это готовая шпаргалка, которая во многих случаях позволяет значительно сэкономить время.
  • При расчете степени окисления элементов в сложных веществах сначала указываем степени окисления элементов, которые мы точно знаем (элементы с постоянной степенью окисления), а степень окисления элементов с переменной степенью окисления обозначаем, как х. Сумма всех зарядов всех частиц равна нулю в молекуле или равна заряду иона в ионе. Из этих данных легко составить и решить уравнение.