Что видно в ультрафиолетовом свете. Как выбрать ультрафиолетовый фонарик и зачем он нужен

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

Ультрафиолетовая лампа в комнате

Несколько лет назад, когда я впервые включил лампу черного света в темной лаборатории, у меня возникло ощущение нереальности и даже фантастичности окружающей обстановки. Большинство вещей так и остались темными - они лишь слегка отражали слабый фиолетовый свет лампы.

Зато некоторые предметы, неприметные при дневном свете, ярко вспыхнули разными цветами. Больше всего было синего. Синим светились белые провода и бесцветная ПВХ трубка, ПЭТФ бутылки и пластиковое ведро. Бумага стала ярко-белой, с синеватым оттенком, оранжевый пластик стал еще более ярким. Светились цветные наклейки, которые использовались в качестве этикеток. Светились белый халат, рубашка и некоторые части свитера.

Недавно попробовал провести эксперименты с УФ лампой дома (за неимением лаборатории). Впечатления оказались совсем иные. Если в лаборатории стены были покрыты кафельной плиткой и побелены, то дома стены и потолок были обклеены обоями.

Часть обоев были бумажными - бумага светилась в УФ, зато пятна клея, краски и других загрязнений - нет. В результате комната выглядела неэстетично: малозаметные при дневном и электрическом свете загрязнения выступали на первый план - темные пятна на светящемся фоне. Темно-коричневая мебель в ультрафиолетовом свете казалась светло-коричневой, некрасивой.

Масляная краска в ванной выглядела откровенно страшно, зато в самой ванне я заметил яркие синие пятна - они светились почти, как люминофор. Оказалось, что это застывшие кусочки водоэмульсионной краски, от которой я мыл ведро. Краска выглядела белой, но яркое свечение в УФ свидетельствовало, что на самом деле краска желтая, белый цвет ей придает лошадиная доза оптических отбеливателей.

Неприятным сюрпризом оказалось то, что кошачьи метки в ультрафиолетовых лучах светились зеленым: стало ясно, что многие из окружающих предметов придется тщательно мыть.

Фотографировать окружающую обстановку не было никакого желания, поэтому приступил к экспериментам. Большинство опытов проводил в темной комнате, некоторые - при электрическом свете.

В прошлых экспериментах фарфоровая ступка, которую я фотографировал в УФ свете в лаборатории, выглядела темно-фиолетовой (т.е. она просто отражала тусклые фиолетовые лучи лампы).

Оказалось, что белые фарфоровые тарелки ведут себя аналогично, но выяснилось и существенное отличие. Визуально тарелки выглядят почти чистыми, но стоит включить лампу черного света и на тарелке становились заметны остатки загрязнений и моющего средства: фарфор не светился, а загрязнения и / или моющее светились зеленым.

Внутренняя сторона кисти руки выглядела в ультрафиолетовых лучах светлой, зато внешняя - темной (как у негра) - светились только ногти. На фотографиях разницу видно не очень четко, т.к. в случае внешней стороны кисти экспозиция была значительно дольше.

Экран монитора (с лучевой трубкой) светился в ультрафиолетовых лучах зеленым, причем не особо интенсивно. Это не удивительно, поскольку люминофоры, нанесенные на экран кинескопа, рассчитаны на свечение под действием пучка электрона, а не мягких ультрафиолетовых лучей.

Игрушечная мышь, сделанная из ткани, выглядела в ультрафиолетовом свете значительно красивее - некоторые участки ярко светились. Свечение было заметно даже при электрическом свете.

Бесцветная ПЭТФ бутылка светилась в ультрафиолете синим - настолько ярко, что это было хорошо заметно и при включенном электрическом освещении.

Но наиболее ярко светилась бесцветная ПВХ трубка - она буквально горела синим, как люминесцентная лампа. Не вызывает сомнения присутствие оптических отбеливателей.

Большинство людей при вопросе «Что такое люминесценция?» вспоминают люминесцентные газоразрядные лампы. Действительно, это одно из наиболее известных применений яркого (в буквальном смысле) физического явления, а именно фотолюминесценции (возбуждения светом). В стеклянных трубках находятся пары ртути, возбуждаемые электрическим разрядом и излучающие в области ультрафиолета. Нанесенное на стенки трубки покрытие — люминофор — переводит ультрафиолет в видимое человеческим глазом излучение. В зависимости от типа люминофора цвет свечения может быть разным — это дает возможность выпускать лампы не только «холодного» и «теплого» света, но и разных цветов — красного, синего и др. Появившиеся в последнее время энергосберегающие лампы, превосходящие лампы накаливания в области видимого света, — это те же люминесцентные лампы, только сильно уменьшенные благодаря миниатюризации электроники. Другая разновидность люминесценции — катодолюминесценция. Именно она лежит в основе электронно-лучевых трубок: люминофор, покрывающий экран, светится под действием пучка электронов. Рентгенолюминесценция, например, используется при проведении флюорографии — покрытый люминофором экран светится под действием рентгеновского излучения.

Согласно определению, приведенному в Физической энциклопедии, люминесценция излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения отделяет люминесценцию от теплового равновесного излучения и показывает, что это понятие применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному. При сильном отклонении от равновесного состояния говорить о тепловом излучении или люминесценции не имеет смысла. В видимой области спектра тепловое излучение становится заметным только при температуре тела в тысячи градусов, в то время как люминесцировать в этой области оно может при любой температуре, поэтому люминесценцию часто называют холодным свечением. Вторая часть определения (признак длительности) была введена С.И. Вавиловым, чтобы отделить люминесценцию от различных видов рассеяния, отражения, параметрического преобразования света, тормозного излучения и излучения Черенкова-Вавилова. В отличие от рассеяния света, при люминесценции между поглощением и испусканием происходят промежуточные процессы, длительность которых больше периода световой волны. В результате этого при люминесценции утрачивается корреляция между фазами колебаний поглощенного и излученного света.

Быстро и медленно

После прекращения возбуждения люминесценция затухает. Если это происходит быстро, то процесс относят к флюоресценции (от названия минерала флюорита, у которого было обнаружено это явление), а если свечение продолжается длительное время — то к фосфоресценции. Флюоресценцию под действием света (видимого и УФ) можно часто наблюдать в быту — светятся красители маркеров, покрытие дорожных знаков и ткани спецодежды. Именно флюоресценция отвечает за то, что свежевыстиранная белая рубашка кажется на ярком солнечном свету «белее белого». И эффект этот не психологический. Просто стиральные порошки содержат специальные вещества, оптические отбеливатели, которые под действием ультрафиолета излучают видимый свет (обычно в сине-фиолетовой области). Этим объясняется и тот факт, что белая одежда светится под действием УФ-ламп в дискотеках. Медленно затухающая люминесценция (фосфоресценция) также весьма распространена в быту — вспомните циферблаты часов и стрелки других приборов (а также экраны старых осциллографов).


И другие

Кроме вышеупомянутых разновидностей существуют радиолюминесценция — под действием проникающей радиации (применялась в сцинтилляционных счетчиках), хемилюминесценция под действием химических реакций (включающая биолюминесценцию), кандолюминесценция (при механических воздействиях), лиолюминесценция (при растворении кристаллов), электролюминесценция (под действием электрического поля) и т. п. Некоторые из них вполне знакомы читателям. Например, свечение белого фосфора — результат хемилюминесценции: окисляясь под действием кислорода воздуха, светятся пары фосфора. Окислением объясняется и свечение пластиковых «фонариков» — химических источников света, только там используются не фосфор и кислород, а органический краситель и перекись водорода.


Секретных надписей нет

Люминесценция под действием ультрафиолета активно применяется для проверки подлинности различных документов, бланков и банкнот. Сейчас практически у любого кассира под рукой находится аппарат с УФ-лампой для проверки денежных купюр. Этот способ применяется с начала XX века, Роберт Вуд, знаменитый американский физик, экспериментировал с ним еще в конце Первой мировой войны. Вот как описывает это сам Вуд в книге своего биографа Вильяма Сибрука «Роберт Вуд. Современный чародей физической лаборатории»:

…Они [Бюро главного цензора Британского военно-морского флота] гордо заявили мне, что изобрели бумагу, на которой невозможно сделать «невидимую» тайную запись. Ее продавали во всех почтовых отделениях, и письма, написанные на ней, можно было не подвергать никаким испытаниям. Эта бумага стала очень популярной, так как письма не задерживались цензурой. Это была обычная почтовая бумага, на которой были отпечатаны частые параллельные линии, розовые, зеленые и голубые. Красная краска разводилась в воде, зеленая в спирту, а голубая в бензине. На глаз бумага казалась серой. Так как практически любая жидкость, в которой растворены невидимые чернила, относится к одному из этих трех классов, одна из цветных линий растворится в бесцветной жидкости, стекающей с пера, и появятся следы надписи. Я вспомнил, что китайские белила получаются черными, как уголь, на фотографиях, сделанных в ультрафиолетовых лучах, и сказал: «Предположим, что я написал бы на ней тонкой палочкой китайскими белилами — тогда ни одна из линий не растворится, и все же надпись можно будет прочесть, если сфотографировать бумагу».


Метки, нанесенные невидимыми чернилами, светящимися в ультрафиолете, очень часто применяются для определения подлинности различных документов. Да и сама бумага, как правило, содержит волокна, светящиеся в ультрафиолете.

«О нет, — ответили они, — вы можете писать на ней даже зубочисткой или стеклянной палочкой без всякой краски. Цветные линии сделаны слегка мягкими или липкими, так что они смажутся и получатся темно-серые буквы. Вот вам стеклянная палочка — попробуйте сами!» (…)

Я сказал: «Хорошо. Все же я попытаюсь. Принесите мне резиновый штамп и немного вазелина». Мне принесли большой, гладкий чистый штамп военной цензуры. Я натер его вазелином, затем как следует вытер платком, пока он не перестал оставлять следы на бумаге. Затем я плотно прижал его к «шпионоупорной» бумаге, не давая соскальзывать в сторону.


«Можете ли вы обнаружить здесь надпись?» — спросил я.

Они испытали бумагу в отраженном и поляризованном свете и сказали: «Здесь ничего нет».

«Тогда давайте осветим ее ультрафиолетовыми лучами». Мы взяли ее в кабинку и положили перед моим черным окошечком. На бумаге яркими голубыми буквами, как будто к ней приложили штамп, намазанный чернилами, светились слова: «Секретных надписей нет».

Поиск следов крови на различных поверхностях, а также орудиях совершения преступления – это одна из основных задач, с решением которых сталкиваются сотрудники экспертно-криминалистических центров и отделов. При этом далеко не всегда следы крови могут быть идентифицированы визуально. Они могут быть замыты или иметь микроскопические размеры, что требует использования специфических методов их поиска, в частности ультрафиолетового света.

Второй сферой применения ультрафиолетовых фонарей является поиск подранков животных по кровавому следу охотниками. Т.к. на растительность или земле ночью ее очень сложно заменить.

Как светится кровь в ультрафиолете

Отвечая на вопрос о том, светится ли крови в ультрафиолете, сразу же необходимо отметить, что данная биологическая жидкость не флуоресцирует под воздействием УФ лучей. Кровь полностью поглощает весь спектр ультрафиолета, приобретая абсолютно черный цвет. Именно в силу этой причины на различных специализированных форумах можно встретить негативные отзывы о фонарях (люди ожидают, что она начнет светиться), предназначенных для поиска крови. НО черный цвет крови - это тоже результат. Т.к. все остальные поверхности (трава, растительность, земля, листья) ультрафиолетовый свет отражает. Т.е. будут хорошо заметны ЧЕРНЫЕ следы крови на серо-сине-белой поверхности леса. Поэтому можно ответить ДА, уф фонарик может помочь найти подранка. Но не так, как этого ожидают многие, насмотревшись фильмов. Кстати о этом объясним ниже.

Но как и почему в таком случае для идентификации крови в криминалогии всего мира используется ультрафиолет?

На самом деле идентификация крови выполняется с помощью специального метода, суть которого заключается в обработке предполагаемых мест наличия ее следов специальным составом – люминолом. Это органическое соединение способно вступать в реакцию с гемоглобином, которая и приводит к флюоресценции голубого оттенка. Именно поэтому кровь, обработанная таким составом, светится в ультрафиолете. Стоит отметить, что данный метод обеспечивает возможность обнаружить даже самые незначительные по размеру и замытые чистящими средствами следы крови, поскольку полностью стереть их практически невозможно.

Еще одна особенность поиска крови ультрафиолетом заключается в краткосрочном облучении ее следов. Дело в том, что УФ облучение разрушает находящиеся в крови ДНК, что приводит к невозможности ее дальнейшего исследования. Именно поэтому при получении положительной реакции воздействие UV светом на кровь приостанавливается, а ее образцы берутся для дальнейших лабораторных исследований.

В каталоге нашего интернет-магазина представлен широкий выбор профессиональных криминалистических и охотничьих УФ фонарей для выявления следов крови. Каждая предлагаемая модель разработана на базе оригинальных высококачественных комплектующих и соответствует всем современным стандартам. Возможны оптовые поставки фонариков в криминалистические центры и специализированные лаборатории.

Ультрафиолет — это часть спектра электромагнитного излучения, которая находится за границами нашего восприятия. Проще говоря — невидимое излучение. Но не совсем. Видимый нами свет ограничен длинами волн от 380 нм до 780 нм (нанометров). Длина волн ультрафиолета или ультрафиолетового излучения лежит в диапазоне от 10 нм до 400 нм. Получается, что все-таки мы можем видеть ультрафиолет — но только его малую часть, находящуюся в небольшом промежутке между 380 и 400 нм.

Все. Сухие факты закончились, начинаются факты интересные. Дело в том, что это еле видимое излучение на самом деле играет огромную роль не только в биосфере (об этом мы обязательно расскажем отдельно), но и в освещении. Проще говоря, ультрафиолет помогает нам видеть.

Ультрафиолет и освещение

Основное применение ультрафиолет нашел в светильниках. Электрические разряды заставляют светиться газ внутри люминесцентной лампы (или компактной люминесцентной лампы) в ультрафиолетовом диапазоне. Для того чтобы получить видимый свет , на стенки лампы наносится специальное покрытие из материала, который будет флуоресцировать — то есть светиться в видимом диапазоне — под воздействием ультрафиолетового излучения. Такой материал называется люминофором, и производители постоянно работают над улучшением его состава, чтобы повысить качество получаемого видимого света. Именно поэтому на сегодняшний день мы имеем неплохой выбор люминесцентных ламп, которые не только выигрывают у обычных ламп накаливания в энергоэффективности, но и производят достаточно приятный для глаза свет практически полного спектра.

Какие еще могут быть применения у ультрафиолета?

Существует целый ряд материалов, способных светиться в ультрафиолете. Эта способность называется флуоресценцией — ей обладают многие органические вещества. Кроме нее существует и так называемая фосфоресценция — ее отличие в том, что вещество испускает свет с более низкой интенсивностью, но продолжает светиться еще некоторое время (часто довольно длительное — до нескольких часов) после прекращения воздействия на него ультрафиолетового излучения. Эти свойства активно используются при изготовлении различных «светящихся в темноте» предметов и украшений.

Инфекционное заболевание, вызванное грибком дерматофитом, называется лишаем. Микроскопические организмы живут на коже, а именно в волосяных фолликулах. Грибок, ответственный за стригущий лишай, находится в почве, потому кошки и крупный рогатый скот чаще всего заражаются им. Споры сохраняются окружающей среде до двух лет даже на садовых инструментах, обуви, ковровых дорожках.

Дети, которые пробуют все руками, а иногда на зуб, подвергаются инфекции из-за слабой иммунной системы. Людям болезнь передается через домашних животных или от инфицированного окружения. Эпидермофития стоп и паха чаще всего распространяются общественных раздевалках и бассейнах.

Лишай проявляется небольшим поражением с чешуйчатой кожей в центре. Постепенно он разрастается, вызывая выпадение волос. Очаги не всегда имеют форму круга, а волосы не всегда выпадают полностью. Облысение может сопровождаться покраснением и воспалением. Волосы могут вырастать даже во время присутствия инфекции на теле, потому исчезновение проплешин не указывает на излечение.

Для диагностики требуются более точные методы. Дерматологи зачастую изучают патологические изменения на коже под лампой Вуда, чтобы выбрать дальнейшее направление обследований или подтвердить собственные догадки.

Флуоресцентная лампа

Лампа Вуда - это инструмент для диагностики, при которой пораженная кожа под действием черного света вызывают определенное свечение. Черный свет представляет собой невидимые невооруженным глазом волны в ультрафиолетовом спектре, которые в темноте светятся фиолетовым.

Традиционная лампа Вуда оснащалась ртутным покрытием для излучения волны 320-450 нм и была изобретена в 1903 году физиком Робертом Вудом. Современные источники черного света разрабатываются на основе люминесцентных, ртутных, светоизлучающих ламп, диодов или ламп накаливания. Именно темно-сине покрытие на трубе отфильтровывает большую часть волн видимого света.

Люминесцентная диагностика

Чтобы продиагностировать кожные проблемы под лампой Вуда, необходимо выполнить несколько шагов:

  1. Кожу вымыть, очистить от макияжа, увлажняющих кремов и другой косметики, так как она может вызвать ложноположительный результат.
  2. Лампу включить для прогрева на минуту.
  3. Выключить в кабинете свет и зашторить окна, чтобы создать темноту.
  4. Когда зрение адаптируется к темноте, направить свет лампы на кожу на расстоянии 10-30 см.

Флуоресцентный цвет позволяет обнаружить пигментированные или депигментированные пятна.

Нормальная здоровая кожа светится легким голубым цветом, утолщенные участки проявляются белым, а жирные - желтым, обезвоженная кожа становится пурпурной.

Чтобы отличить от других кожных поражений заразный лишай, используется лампа Вуда. Результат теста является положительным, если пигментация становится более выраженной на фоне теста.

Особенности свечения

Флуоресцентный черный цвет становится видимым, когда коллаген или порфирины поглощают его и излучают в волнах видимого спектра. Нитки, волосы, препарат и остатки мыла на коже также могут флуоресцировать.

Каким цветом лишай светится под ультрафиолетом при различных патологиях кожи:

  1. Увеличение пигментации (мелазма, поствоспалительная пигментация). Очаги поражения имеют четкие границы под светом лампы из-за увеличения уровня меланина в клетках.
  2. Потеря пигментации (витилиго, клубневый склероз, гипомеланоз) должна быть выявлена у светлокожих людей. Очаги будут светиться ярко-голубым (иногда желтовато-зеленого) из-за накопления биоптеринов. Участки с уменьшением потока крови не меняются под светом.
  3. Отрубевидный лишай представляет собой слегка шелушащиеся постоянные высыпания на передней части груди и спине, вызванные грибками. Под светом лампы светятся оранжевым или желтым. Разноцветный лишай нарушает пигментацию под действием грибка, и его пятна становятся более выраженными под ультрафиолетом.
  4. При фолликулите, вызванном дрожжами малассезия, волосяные фолликулы источают голубовато-белый свет.
  5. Свечение при стригущем лишае зависит от вида грибковой инфекции: при микроспории оно сине-зеленое (М canis, М. audouinii, М distortum), а при трихофитии - бледно-голубое. Грибковые инфекции, вызванные другими организмами, не флуоресцирует
  6. Эритразма, вызванная коринебактериями, сопровождается пигментированной сыпью в складках кожи, которые окрашиваются в кораллово-розовый цвет.
  7. Плоский лишай диагностируется по появлению беловато-желтых пятен.
  8. Розовый и опоясывающий лишай обследуется с помощью лампы Вуда только для дифференциальной диагностики. Вирус герпеса подтверждается обнаружением ДНК методом полимеразной цепной реакции в жидкости, которая берется из пузырьков сыпи. Воспалительные процессы подсвечиваются белым цветом, что также может говорить о реакции иммунитета на вирусы или бактерии.

Лампа Вуда направляет диагностику в нужное русло. Самым заразным видом грибка, вызывающего лишай, является микроспорум. Чтобы подтвердить заражение, проводится бакпосев в лабораторных условиях, требующий, как минимум, 10-14 дней. Потому в качестве метода экспресс-диагностики выступает люминесцентная лампа с фильтром Вуда.

Свежие очаги стригущего лишая на волосах могут не обнаруживаться с помощью лампы, поскольку признаки поражения незначительны. Дерматолог рекомендует удалить волосы с предполагаемого участка заражения, чтобы изучить корни. Даже после гибели грибка волос продолжает светиться.

Правила диагностики

Лампа Вуда помогает выявить очаги лишая на гладкой коже, волоса, ногтях, бровях. Дерматолог использует защитную маску или очки, защищают зрение от прямого излучения лампы. Пациента попросят закрыть глаза. Процедура длится в среднем 1-2 минуты, не требует дополнительных действий со стороны пациента. Иногда используется микроскоп для детального изучения состояния кожи.

Необходимо помнить, что люминесцентное обследование лишь дополняет основную диагностику, позволяет заподозрить определенное заболевание.

Так светящийся белым очаг означает воспаление, витилиго, кандидоз, системную красную волчанку. Потому дифференциальная диагностика требует взятие соскоба и анализа материала под микроскопом.

Идентифицировать оттенок той или иной патологии способен опытный глаз дерматолога. В домашних условиях лампа Вуда способна опровергнуть или подтвердить необходимость обращения к врачу при появлении сыпи на теле или голове.

Лечение ультрафиолетом

Если грибковые инфекции можно диагностировать ультрафиолетовыми лампами, то иные кожные поражения поддаются одноименное физиотерапии. Вирус герпеса, который провоцирует появление опоясывающего лишая, чувствителен к ультрафиолету. Потому дерматологи используют физиотерапевтические процедуры, которые способствуют постепенному исчезновению пятен. Розовый лишай можно излечить самостоятельно даже в солярии, если он не поддается терапии и склонен к рецидивам.