Под воздействием ультрафиолетовых лучей. Применение ультрафиолета в других сферах. Защита кожи от УФ-излучения

УФ излучение - это электромагнитные волны, которые невидимы человеческому глазу. Оно занимает спектральное положение между видимым и рентгеновским излучением. Интервал ультрафиолетового излучения принято делить на ближний, средний и дальний (вакуумный).

Биологи сделали такое разделение УФЛ для того, чтобы можно было лучше увидеть разницу в эффекте, оказываемом лучами разной длины на человека.

  • Ближний ультрафиолет принято называть УФ-А,
  • средний - УФ-B,
  • дальний - УФ-С.

Ультрафиолетовое излучение исходит от солнца и атмосфера нашей планеты Земля защищает нас от мощного воздействия ультрафиолетовых лучей . Солнце является одним из немногих естественных УФ излучателей. При этом дальний ультрафиолет УФ-С блокируется атмосферой Земли почти полностью. Те 10%, длинноволновых лучей ультрафиолета попадают к нам в виде солнца. Соответственно, тот ультрафиолет, который попадает на планету, это в основном УФ-А,и в небольших количествах УФ-B.

Одно из главных свойств ультрафиолета - это его химическая активность, благодаря которой уф излучение оказывает большое влияние на организм человека . Самым опасным для нашего организма считается коротковолновый ультрафиолет. Несмотря на то, что наша планета максимально оберегает нас от воздействия на нас ультрафиолетовых лучей, если не соблюдать некоторые меры предосторожности, можно все-таки пострадать от них. Источниками коротковолнового типа излучения являются сварочные аппараты и ультрафиолетовые лампы.

Положительные свойства ультрафиолета

Лишь в XX веке начали проводиться исследования, которые доказали положительное влияние УФ излучения на организм человека . Результатом этих исследований стало выявление следующих полезных свойств: укрепление человеческого иммунитета, активизация защитных механизмов, улучшение циркуляции крови, расширение сосудов, повышение проницаемости сосудов, увеличение секреции ряда гормонов.

Еще одним свойством ультрафиолета является его способность изменять углеводный и белковый обмен веществ человека. Могут повлиять УФ лучи также и на вентиляцию легких - частоту и ритм дыхания, повышение газообмена, уровня потребления кислорода. Улучшается также и функционирование эндокринной системы, в организме образуется витамин Д, который укрепляет костно-мышечную систему человека.

Применение ультрафиолета в медицине

Довольно часто ультрафиолет применяют в медицине. Несмотря на то, что в некоторых случаях ультрафиолетовые лучи могут плохо влиять на организм человека, при правильном использовании они могут быть и полезны.

В медицинских учреждениях уже давно придумали полезное применение искусственному ультрафиолету. Существуют различные излучатели, которые могут помочь человеку с помощью ультрафиолетовых лучей справиться с различными заболеваниями . Они также делятся на те, которые излучают длинные, средние и короткие волны. Каждый из них применяется в определенном случае. Так, длинноволновое излучение подходит для лечения дыхательных путей, для повреждений костно-суставного аппарата, а также в случае различных повреждений кожи. Длинноволновое излучение мы можем увидеть также и в соляриях.

Немного другую функцию выполняет лечение средневолновым ультрафиолетом . Назначается оно в основном людям, страдающим от иммунодефицита, нарушения обмена веществ. Применяется также при лечении нарушений опорно-двигательного аппарата, обладает обезболивающим действием.

Коротковолновое излучение же применяется при лечении заболеваний кожи, при заболеваниях ушей, носа, при повреждениях дыхательных путей, при сахарном диабете, при поражении клапанов сердца.

Помимо различных приборов, излучающих искусственный ультрафиолет, которые применяются в массовой медицине, существуют также и ультрафиолетовые лазеры , обладающие более точечным действием. Используются эти лазеры, например, при микрохирургии глаза. Применяются такие лазеры также и для научных исследований.

Применение ультрафиолета в других сферах

Помимо медицины, ультрафиолетовое излучение применяется и во многих других сферах, значительно улучшая нашу жизнь. Так, ультрафиолет является отличным обеззараживающим средством , и применяется, в том числе, для обработки различных предметов, воды, воздуха в помещениях. Широко применяется ультрафиолет и в полиграфии : именно с помощью ультрафиолета производятся различные печати и штампы, сушатся краски и лаки, денежные купюры защищаются от подделки. Кроме своих полезных свойств, при правильной подаче ультрафиолет может создать красоту: применяется он для различных световых эффектов (чаще всего это происходит на дискотеках и на выступлениях). Помогают уф лучи также и в нахождении пожаров.

Одним из негативных последствий ультрафиолетового воздействия на организм человека является электроофтальмия . Этим термином называют поражение органа зрения человека, при котором обжигается и отекает роговица глаза, а в глазах появляется режущая боль. Болезнь эта может возникнуть в том случае, если человек смотрит на лучи солнца без специального защитного приспособления (солнцезащитных очков) или пребывает в заснеженном районе в солнечную погоду, с очень ярким светом. Также электроофтальмию можно заработать при кварцевании помещений.

Негативных последствий можно добиться и благодаря долгому, интенсивному воздействию ультрафиолетовых лучей на организм. Последствий таких может быть достаточно много, вплоть до развития различных патологий. Основными симптомами чрезмерного облучения являются

Последствия же сильного облучения бывают следующие: гиперкальциемия, задержка роста, гемолиз, ухудшение иммунитета, различные ожоги и заболевания кожи. Больше всего подвержены чрезмерному облучению люди, постоянно работающие на открытом воздухе, а также те люди, которые постоянно работают с приборами, излучающими искусственный ультрафиолет.

В отличие от УФ излучателей, применяемых в медицине, солярии являются более опасными для человека. Посещение соляриев никем не контролируется, помимо самого человека. Люди, которые часто посещают солярии для того, чтобы добиться красивого загара, зачастую пренебрегают негативными последствиями УФ излучения, несмотря на то, что частое посещение соляриев может привести даже к летальному исходу.

Приобретение более темного цвета кожи происходит за счет того, что наш организм борется с травмирующим воздействием на него УФ излучения, и вырабатывает красящий пигмент, под названием меланин. И если покраснение кожи - это временный дефект, проходящий через какое-то время, то появляющиеся на теле веснушки, пигментные пятна, которые происходят в результате разрастания клеток эпителия - стойкое повреждение кожи .

Ультрафиолет, глубоко проникая в кожные покровы, может изменить клетки кожи на генном уровне и привести к ультрафиолетовому мутагенезу . Одним из осложнений этого мутагенеза является меланома - опухоль кожи. Именно она способна привести человека к летальному исходу.

Для того, чтобы избежать негативных последствий воздействия УФ лучей, необходимо обеспечить себя некоторой защитой . На различных предприятиях, работающих с приборами, излучающими искусственный ультрафиолет, нужно использовать спецодежду, шлемы, щитки, изолирующие ширмы, защитные очки, переносной экран. Людям же, не задействованным в деятельности подобных предприятий, нужно ограничивать себя в чрезмерном посещении соляриев и в долгом нахождении на открытом солнце, в летнее время года использовать солнцезащитные кремы, спреи или лосьоны, а также носить солнцезащитные очки и закрытую одежду из натуральных тканей.

Существуют также и негативные последствия от недостатка УФ излучения . Длительное отсутствие УФИ может привести к заболеванию под названием «световое голодание». Основные его симптомы очень сходны с симптомами чрезмерного воздействия ультрафиолета. При данной болезни у человека снижается иммунитет, нарушается обмен веществ, появляется утомляемость, раздражительность и т. п.

Всем известно, что Солнце — центр нашей системы планет и стареющая звезда — испускает лучи. Солнечное излучение состоит из ультрафиолетовых лучей (УФ / UV) типа А, или UVA — длинноволновых, типа В, или UVB — коротковолновых. Наше понимание того, какие виды повреждений они могут причинять коже и как лучше всего защититься от УФ, похоже, меняется каждый год — по мере появления новых исследований. Например, когда-то считалось, что только UVB вредны для кожи, но мы все больше и больше узнаем из исследований о повреждениях, вызванных UVA. Как следствие, появляются и улучшенные формы защиты от UVA, которые способны при правильном применении предотвратить повреждения от воздействия солнца.

Что такое УФ-излучение?

УФ-излучение является частью электромагнитного (светового) спектра, который достигает Земли от Солнца. Длина волн УФ-излучения меньше спектра видимого света, что делает его невидимым для невооруженного глаза. Излучение по длине волн делится на UVA, UVB и UVC, причем UVA — наиболее длинноволновое (320-400 нм, где нм — миллиардная часть метра). UVA подразделяется еще на два диапазона волн: UVA I (340-400 нм) и UVA II (320-340 нм). Диапазон UVB — от 290 до 320 нм. Более короткие лучи UVC поглощаются озоновым слоем и не достигают поверхности земли.

Однако два типа лучей — UVA и UVB — проникают в атмосферу и являются причиной многих болезней — преждевременного старения кожи, повреждения глаз (включая катаракту) и рака кожи. Они также подавляют работу иммунной системы, уменьшая способность организма бороться с этими и другими заболеваниями.

УФ-излучение и рак кожи

Повреждая клеточную ДНК кожи, чрезмерное УФ-излучение вызывает генетические мутации, которые могут привести к раку кожи. Поэтому и Департамент здравоохранения и социальных служб США, и Всемирная организация здравоохранения признали УФ доказанным канцерогеном для человека. Ультрафиолетовое излучение считается основной причиной рака кожи немеланомы (NMSC), включая карциному базальной клетки (BCC) и плоскоклеточную карциному (SCC). Эти виды рака поражают ежегодно более миллиона людей в мире, из которых более 250 000 — граждане США. Многие эксперты считают, что, особенно для людей с бледной кожей, УФ-излучение часто играет ключевую роль в развитии меланомы — самой опасной формы рака кожи, которая ежегодно убивает более 8 000 американцев.

УФ А-излучение

Большинство из нас подвергается воздействию большого количества ультрафиолета на протяжении жизни. Лучи UVA составляют до 95 % УФ-излучения, достигающего поверхности Земли. Хотя они менее интенсивны, чем UVB, лучи UVA в 30-50 раз более распространены. Они присутствуют с относительно равной интенсивностью в течение всего светового дня в течение года и могут проникать сквозь облака и стекло.

Именно UVA, которое проникает в кожу более глубоко, чем UVB, виновато в старении кожи и возникновении морщин (так называемая солнечная геродермия), но до недавнего времени ученые полагали, что UVА не наносило значительного ущерба эпидермису (самый внешний слой кожи), где локализуется большинство случаев рака кожи. Однако исследования последних двух десятилетий показывают, что именно UVA повреждает клетки кожи, называемые кератиноцитами, в базальном слое эпидермиса, где развивается большинство случаев рака кожи. Базальные и плоскоклеточные клетки — это разновидности кератиноцитов.

Также именно UVA вызывает в основном загар, и теперь мы знаем, что загар (безразлично, где он получен — на открытом воздухе или в солярии) наносит коже ущерб, который усугубляется с течением времени, поскольку повреждаются ДНК кожи. Оказывается, кожа темнеет именно потому, что таким образом организм пытается предотвратить дальнейшее повреждение ДНК. Данные мутации могут привести к раку кожи.

Вертикальный солярий в основном излучает UVA. Лампы, используемые в салонах для загара, излучают дозы UVA в 12 раз больше, чем солнце. Неудивительно, что у людей, которые используют салон для загара, в 2,5 раза чаще развивается плоскоклеточный рак и в 1,5 раза чаще — базально-клеточный рак. Согласно недавним исследованиям, первое воздействие солярия в молодом возрасте повышает риск меланомы на 75%.

УФ В-излучение

UVB, которые являются главной причиной покраснения кожи и солнечных ожогов, наносят в основном ущерб более поверхностным эпидермальным слоям кожи. UVB играет ключевую роль в развитии рака кожи, старении и потемнении кожи. Интенсивность излучения зависит от сезона, местоположения и времени суток. Самое значительное количество UVB поражает США в период с 10:00 до 16:00 с апреля по октябрь. Однако лучи UVB могут повреждать кожу круглый год, особенно на больших высотах и на отражающих поверхностях, таких как снег или лед, которые отдают назад до 80% лучей, так что они попадают на кожу дважды. Радует только то, что UVB практически не проникают через стекло.

Защитные меры

Помните, что защищаться от УФ-излучения следует как внутри помещений, так и снаружи. Всегда ищите тень на улице, особенно между 10:00 и 16:00. А поскольку UVA проникает через стекло, подумайте над укреплением тонированной UV-защитной пленки на верхних частях боковых и задних стекол вашего автомобиля, а также на окнах дома и офиса. Такая пленка блокирует до 99,9% УФ-излучения и пропускает до 80% видимого света.

На открытом воздухе одевайте, чтобы ограничить воздействие УФ-излучения, специальную солнцезащитную одежду с UPF (коэффициент защиты от ультрафиолетового излучения). Чем выше значения UPF, тем лучше. Например, рубашка с UPF 30 означает, что только 1/30-я ультрафиолетового излучения Солнца может достичь кожи. Существуют и специальные добавки в средства для стирки, которые в обычных тканях обеспечивают более высокие значения UPF. Не игнорируйте возможность защититься — выбирайте те ткани, у которых лучшая защита от солнечных лучей. Например, яркая или темная блестящая одежда отражает больше УФ-излучения, чем светлые и отбеленные хлопчатобумажные ткани; правда, свободная одежда обеспечивает больший барьер между вашей кожей и солнечными лучами. Наконец, широкополые шляпы и солнцезащитные очки с УФ-защитой помогают защитить чувствительную кожу на лбу, шее и вокруг глаз — именно в этих областях обычно бывают наиболее тяжелые повреждения.

Защитный фактор (SPF) и УФ В-излучение

С появлением современных солнцезащитных кремов появилась традиция измерять их эффективность фактором защиты от солнца, или SPF. Как ни странно, SPF — это не фактор и не мера защиты как таковой.

Эти числа просто указывают, сколько времени потребуется, чтобы UVB-лучи вызвали покраснение кожи при использовании солнцезащитного крема по сравнению с тем, как кожа будет краснеть без применения данного продукта. Например, пользуясь солнцезащитным кремом с SPF 15, человек продлит время безопасного нахождения на солнце в 15 раз по сравнению с пребыванием в аналогичных условиях без солнцезащитного крема. Солнцезащитный крем SPF 15 экранирует 93% солнечных лучей UVB; SPF 30 — 97%; и SPF 50 — до 98%. Крем с SPF 15 или даже выше необходимы для адекватной повседневной защиты кожи в солнечное время года. Для более длительного или интенсивного воздействия солнца, например нахождения на пляже, рекомендуется SPF 30 или выше.

Солнцезащитный компонент

Поскольку UVA и UVB вредны для кожи, то нужна защита от обоих видов лучей. Эффективная защита начинается с SPF от 15 или выше, также важны следующие ингредиенты: stabilized a avobenzone, ecamsule (также известный как Mexoryl TM), oxybenzone, titanium dioxide, и zinc oxide . На этикетках солнцезащитных средств можно прочесть фразы типа «защищает от нескольких спектров лучей», «с широким спектром защиты» или «защита от UVA/UVB — все это указывает на то, что предусмотрена защита от UVA. Однако такие фразы могут не совсем соответствовать действительности.

В настоящее время 17 активных ингредиентов одобрены FDA (Управлением по контролю за качеством пищевых продуктов и лекарственных препаратов) для использования в солнцезащитных кремах. Эти фильтры делятся на две широкие категории: химические и физические. Большинство УФ-фильтров — химические, то есть они образуют тонкую защитную пленку на поверхности кожи и поглощают УФ-излучение, прежде чем лучи проникнут в кожу. Физические солнцезащитные средства чаще всего состоят из нерастворимых частиц, отражающих УФ-лучи от кожи. Большинство солнцезащитных кремов содержат смесь химических и физических фильтров.

Солнцезащитные средства, одобренные FDA

Название активного ингредиента / УФ-фильтра

Диапазон охвата

UVA1: 340-400 nm

UVA2: 320-340 nm

Химические абсорбенты :

Aminobenzoic acid (PABA)

Ecamsule (Mexoryl SX)

Ensulizole (Phenylbenzimiazole Sulfonic Acid)

Meradimate (Menthyl Anthranilate)

Octinoxate (Octyl Methoxycinnamate)

Octisalate (Octyl Salicylate)

Trolamine Salicylate

Физические фильтры :

Titanium Dioxide

  • Ищите тень, особенно между 10:00 и 16:00.
  • Не обгорайте.
  • Избегайте интенсивного загара и вертикального солярия.
  • Носите закрытую одежду, в том числе широкополую шляпу и солнцезащитные очки с ультрафиолетовыми фильтрами.
  • Используйте солнцезащитный крем широкого спектра (UVA/UVB) с SPF 15 или выше каждый день. Для продолжительной активности на открытом воздухе используйте водостойкий солнцезащитный крем с широким спектром (UVA/UVB) с SPF 30 или выше.
  • Наносите достаточную порцию (2 столовые ложки минимум) солнцезащитного крема на все тело за 30 минут до выхода на улицу. Повторно применять крем следует каждые два часа или сразу после купания/чрезмерного потоотделения.
  • Берегите новорожденных от солнца, поскольку солнцезащитные кремы можно использовать только для младенцев старше шести месяцев.
  • Каждый месяц проверяйте свою кожу с ног до головы — если обнаружили что-то подозрительное, то бегом к доктору.
  • Ежегодно посещайте врача для профессионального обследования кожи.

В сельскохозяйственном производстве для технологического воздействия оптическим излучением на живые организмы и рас­тения широко применяют специальные источники ультрафиоле­тового (100…380 нм) и инфракрасного (780…106 нм) излучения, а также источники фотосинтетически активного излучения (400…700 нм).

По распределению потока оптического излучения между раз­личными областями ультрафиолетового спектра различают источ­ники общего ультрафиолетового (100…380 нм), витального (280…315 нм) и преимущественно бактерицидного (100…280 нм) действия.

Источники общего ультрафиолетового излучения - дуговые ртут­ные трубчатые лампы высокого давления типа ДРТ (ртутно-кварцевые лампы). Лампа типа ДРТ представляет собой трубку из кварцевого стекла, в концы которой впаяны вольфрамовые элект­роды. В лампу вводится дозированное количество ртути и аргона. Для удобства крепления к арматуре лампы ДРТ снабжены метал­лическими держателями. Лампы ДРТ выпускаются мощностью 2330, 400, 1000 Вт.

Витальные люминесцентные лампы типа ЛЭ выполнены в виде цилиндрических трубок из увиолевого стекла, внутренняя поверх­ность которых покрыта тонким слоем люминофора, излучающего в ультрафиолетовой области спектра световой поток с длиной вол­ны 280…380 нм (максимум излучения в области 310…320 нм). Кро­ме сорта стекла, диаметра трубки и состава люминофора, трубча­тые витальные лампы конструктивно не отличаются от трубчатых люминесцентных ламп низкого давления и включаются в сеть с помощью тех же устройств (дросселя и стартера), что и люминес­центные лампы той же мощности. Лампы ЛЭ выпускаются мощностью 15 и 20 Вт. Кроме этого разработаны и витально-осветительные люминесцентные лампы.

Бактерицидные лампы - это источники коротковолнового ульт­рафиолетового излучения, большая часть которого (до 80 %) при­ходится на длину волны 254 нм. Конструкция бактерицидных ламп принципиально не отличается от трубчатых люминесцент­ных ламп низкого давления, но стекло с легирующими присадка­ми, применяемое для их изготовления, хорошо пропускает излу­чение в диапазоне спектра менее 380 нм. Кроме этого колба бакте­рицидных ламп не покрыта люминофором и имеет несколько уменьшенные размеры (диаметр и длину) по сравнению с анало­гичными люминесцентными лампами общего назначения одина­ковой мощности.

Бактерицидные лампы включают в сеть с помощью тех же уст­ройств, что и люминесцентные лампы.

Лампы повышенного фотосинтетически активного излучения . Эти лампы применяют при искусственном облучении растений. К ним относятся люминесцентные фотосинтетические лампы низкого давления типов ЛФ и ЛФР (Р означает рефлекторные), дуговые ртутные люминесцентные фотосинтетические высокого давления типа ДРЛФ, металлогалогенные дуговые ртутные высокого давле­ния типов ДРФ, ДРИ, ДРОТ, ДМЧ, дуговые ртутные вольфрамо­вые типа ДРВ.

Люминесцентные фотосинтетические лампы низкого давления типов ЛФ и ЛФР по конструкции аналогичны люминесцент­ным лампам низкого давления и отличаются от них только со­ставом люминофора, а следовательно, и спектром излучения. В лампах типа ЛФ относительно высокая плотность излучения лежит в диапазонах волн 400…450 и 600…700 нм, на которые приходится максимум спектральной чувствительности зеленых растений.

Лампы ДРЛФ конструктивно сходны с лампами типа ДРЛ, но в отличие от последних у них увеличено излучение в красной части спектра. Под слоем люминофора у ламп ДРЛФ есть отражающее покрытие, обеспечивающее требуемое распределение лучистого потока в пространстве.

Источником инфракрасного излучения в простейшем случае может служить обычная осветительная лампа накаливания . В ее спектре излучения инфракрасная область занимает почти 75 %, причем увеличить поток инфракрасных лучей можно за счет уменьшения на 10…15% подводимого к лампе напряжения или окраской колбы в синий или красный цвет. Однако основным ис­точником инфракрасного излучения являются специальные инф­ракрасные зеркальные лампы.

Инфракрасные зеркальные лампы (термоизлучатели) отлича­ются от обычных осветительных ламп параболоидной формой колбы и более низкой температурой нити накаливания. Относи­тельно низкая температура нити накаливания ламп-термоизлучателей позволяет сместить спектр их излучения в инфракрасную область и увеличить среднюю продолжительность горения до 5000 ч.

Внутренняя часть колбы таких ламп, прилегающая к цоколю, покрыта зеркальным слоем, что позволяет перераспределять и концентрировать в заданном направлении излучаемый инфра­красный поток. Для снижения интенсивности видимого излуче­ния нижнюю часть колбы некоторых инфракрасных ламп покры­вают красным или синим теплостойким лаком.

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) - электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 - 10 нм, 7,9·1014 - 3·1016 Герц).

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348) даёт следующие определения:

Наименование

Аббревиатура

Длина волны в нанометрах

Количество энергии на фотон

Ближний

400 нм - 300 нм

3.10 - 4.13 эВ

Средний

300 нм - 200 нм

4.13 - 6.20 эВ

Дальний

200 нм - 122 нм

6.20 - 10.2 эВ

Экстремальный

121 нм - 10 нм

10.2 - 124 эВ

Ультрафиолет А, длинноволновой диапазон

400 нм - 315 нм

3.10 - 3.94 эВ

Ультрафиолет B, средневолновой

315 нм - 280 нм

3.94 - 4.43 эВ

Ультрафиолет С, коротковолновой

280 нм - 100 нм

4.43 - 12.4 эВ

Ближний ультрафиолетовый диапазон часто называют «черным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

Ближний ультрафиолет, УФ-A лучи (UVA, 315-400 нм)

УФ-B лучи (UVB, 280-315 нм)

Дальний ультрафиолет, УФ-C лучи (UVC, 100-280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водяным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле - UVB.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине. Профилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)». Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Длительное воздействие ультрафиолетового излучения может способствовать развитию меланомы и преждевременному старению.

Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки).

Природные источники

Основной источник ультрафиолетового излучения на Земле - Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

    от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)

    от высоты Солнца над горизонтом

    от высоты над уровнем моря

    от атмосферного рассеивания

    от состояния облачного покрова

    от степени отражения УФ-лучей от поверхности (воды, почвы)

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения.

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в мacc-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях.

Многие полимеры, используемые в товарах народного потребления, деградируют под действием УФ света. Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ, что особенно важно в тех случаях, когда продукт подвергается непосредственному воздействию солнечного света. Проблема проявляется в исчезновении цвета, потускнению поверхности, растрескиванию, а иногда и полному разрушению самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света.

Описанный эффект известен как УФ старение и является одной из разновидностей старения полимеров. К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидное волокно. Поглощение УФ приводит к разрушению полимерной цепи и потере прочности в ряде точек структуры. Воздействие УФ на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета (ВУФ) на поверхность полиметилметакрилата.

Применение: Обеззараживание ультрафиолетовым (УФ) излучением, Стерилизация воздуха и твёрдых поверхностей, Дезинфекция питьевой воды, Химический анализ, УФ - спектрометрия, Анализ минералов, Качественный хроматографический анализ, Ловля насекомых, Искусственный загар и «Горное солнце», реставрация.

Ультрафиолетовое излучение – форма оптического излучения, не видимая человеческому глазу, характеризующаяся более короткой длиной и большей энергией фотонов по сравнению со светом. Ультрафиолетовые лучи охватывают на спектре интервал между видимым и рентгеновским излучениями, в интервале длин волн 400-10нм. При этом область излучения в диапазоне 200-10нм называют далекой или вакуумной, а область в интервале 400-200 нм — ближней.

Источники УФ-излучения

1 Естественные источники (звезды, Солнце и пр.)

Только длинноволновая часть ультрафиолетового излучения космических объектов (290-400нм) способна достигнуть поверхности Земли. В тоже время коротковолновое излучение полностью поглощается кислородом и другими веществами, находящимися в атмосфере, на высоте 30-200км от земной поверхности. УФ-излучение звёзд в диапазоне длин волн 90-20нм почти полностью поглощается.


2. Искусственные источники

Излучение твёрдых тел, нагретых до температуры 3 тыс. кельвинов включает определенную долю УФ-излучения, интенсивность которого заметно увеличивается с возрастанием температуры.

Мощным источником УФ-излучения является газоразрядная плазма.

В различных отраслях производства (пищевой, химической и др. отраслях) и медицине используют газоразрядные, ксеноновые, ртутнокварцевые и др. лампы, баллоны которых изготовляют из прозрачных материалов — обычно кварца. Значительное УФ-излучение испускают электроны в ускорителе и специальные лазеры в никелеподобном ионе.

Основные свойства ультрафиолетового излучения

Практическое применение ультрафиолет обусловлено его основными свойствами:

— значительной химической активностью (способствует ускорению протекания химических, биологических процессов);

— бактерицидным эффектом;

— возможностью вызывать люминесценцию веществ — свечение с разной окраской испускаемого света.

Исследование на современном оборудовании спектров испускания/ поглощения/ отражения в УФ-диапазоне предоставляет возможность устанавливать электронную структуру атомов, молекул, ионов.

УФ-спектры Солнца, звёзд и различных туманностей позволяют получать достоверную информацию о процессах, возникающих в этих объектах.

Также ультрафиолет способен нарушать и изменять химические связи в молекулах, в результате могут происходить различные реакции (восстановление, окисление, полимеризация и пр.), что служит базой для такой науки, как фотохимия.

УФ-излучение способно уничтожать бактерии и микроорганизмы. Так, ультрафиолетовые лампы широко используются для дезинфекции в местах массового нахождения людей (медицинские учреждения, детские сады, метро, вокзалы и пр.).

Определенные дозы УФ-излучения способствуют формированию на поверхности кожи человека витамина D, серотонина и др. веществ, оказывающих влияние на тонус и активность организма. Чрезмерное воздействие ультрафиолета приводит к ожогам, ускоряет процесс старения кожи.

Ультрафиолетовое излучение активно используется и в культурно-развлекательной сфере – для создания серии уникальных световых эффектов на дискотеках, сценах баров, театров и пр.