Источники звука звуковые колебания. Реферат: Источники звука. Звуковые колебания

Звуковая волна (звуковые колебания) — это передающиеся в пространстве механические колебания молекул вещества (например, воздуха).

Но далеко не всякое колеблющееся тело является источником звука. Например, не издает звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если переместить ее в тисках вверх и тем самым удлинить свободный конец настолько, чтобы частота его колебаний стала меньше 20 Гц. Исследования показали, что человеческое ухо способно воспри¬нимать как звук механические колебания тел, происходящие с час¬тотой от 20 Гц до 20000 Гц. Поэтому колебания, частоты которых находятся в этом диапазоне, называются звуковыми. Механические колебания, частота которых превышает 20 000 Гц, называются ультразвуковыми, а колебания с частотами менее 20 Гц — инфразвуковыми. Следует отметить, что указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается — некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше 20000 Гц. Колебания, частоты которых больше 20 000 Гц или меньше 20 Гц, слышат некоторые животные. Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Замечали, к примеру, что звук создают вибрирующие в воздухе тела. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то уплотняет, то разрежает воздух, а благодаря упругости воздуха эти чередующиеся воздействия передаются дальше в пространство — от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука. На слух человек воспринимает упругие волны, имеющие частоту в пределах примерно от 16 Гц до 20 кГц (1 Гц — 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В воздухе при температуре 0° С и нормальном давлении звук распространяется со скоростью 330 м/с, в морской воде — около 1500 м/с, в некоторых металлах скорость звука достигает 7000 м/с. Упругие волны с частотой меньше 16 Гц называют инфразвуком, а волны, частота которых превышает 20 кГц, — ультразвуком.

Источником звука в газах и жидкостях могут быть не только вибрирующие тела. Например, свистят в полете пуля и стрела, завывает ветер. И рев турбореактивного самолета складывается не только из шума работающих агрегатов — вентилятора, компрессора, турбины, камеры сгорания и т. д., но также из шума реактивной струи, вихревых, турбулентных потоков воздуха, возникающих при обтекании самолета на больших скоростях. Стремительно несущееся в воздухе или в воде тело как бы разрывает обтекающий его поток, периодически порождает в среде области разрежения и сжатия. В результате возникают звуковые волны. Звук может распространяться в виде продольных и поперечных волн. В газообразной и жидкой среде возникают только продольные волны, когда колебательное движение частиц происходит лишь в том направлении, в каком распространяется волна. В твердых телах помимо продольных возникают также и поперечные волны, когда частицы среды колеблются в направлениях, перпендикулярны к направлению распространения волны. Там ударяя по струне перпендикулярно ее направлению, мы заставляем бежать волну вдоль струны. Человеческое ухо неодинаково восприимчиво к звукам разной частоты. Наиболее чувствительно оно к частотам от 1000 до 4000 Гц. При очень большой интенсивности волны перестают восприниматься как звук, вызывая в ушах ощущение давящей боли. Величину интенсивности звуковых волн, при которой это происходит, называют порогом болевого ощущения. Важны в учении о звуке также понятия тона и тембра звука. Всякий реальный звук, будь то голос человека или игра музыкального инструмента, — это не простое гармоническое колебание, а своеобразная смесь многих гармонических колебаний с определенным набором частот. То из них, которое имеет наиболее низкую частоту, называют основным тоном, другие — обертонами. Разное количество обертонов, присущих тому или иному звуку, придает ему особую окраску — тембр. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. По тембру мы легко отличаем звуки скрипки и рояля, гитары и флейты, узнаем голоса знакомых людей.

  • Частотой колебаний называют количество полных колебаний в секунду. За единицу измерения частоты принят 1 герц (Гц). 1 герц соответствует одному полному (в одну и другую сторону) колебанию, происходящему за одну секунду.
  • Периодом называют время (с), в течение которого происходит одно полное колебание. Чем больше частота колебаний, тем меньше их период, т.е. f=1/T. Таким образом, частота колебаний тем больше, чем меньше их период, и наоборот. Голос человека создает звуковые колебания частотой от 80 до 12000 Гц, а слух воспринимает звуковые колебания в диапазоне 16-20000 Гц.
  • Амплитудой колебаний называют наибольшее отклонение колеблющегося тела от его первоначального (спокойного) положения. Чем больше амплитуда колебания, тем громче звук. Звуки человеческой речи представляют собой сложные звуковые колебания, состоящие из того или иного количества простых колебаний, различных по частоте и амплитуде. В каждом звуке речи имеется только ему свойственное сочетание колебаний различной частоты и амплитуды. Поэтому форма колебаний одного звука речи заметно отличается от формы другого, на котором изображены графики колебаний при произношении звуков а, о и у.

Любые звуки человек характеризует в соответствии со своим восприятием по уровню громкости и высоте.

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

Вопросы.

1. Расскажите об опытах, изображенных на рисунках 70-73. Какой вывод из них следует?

В первом опыте (рис. 70) зажатая в тиски металлическая линейка издает звук при ее колебании.
Во втором опыте (рис. 71) можно наблюдать колебания струны, которая при этом тоже издает звук.
В третьем опыте (рис. 72) наблюдается звучание камертона.
В четвертом опыте (рис. 73) колебания камертона "записываются" на закопченую пластинку. Все эти опыты демонстрируют колебательный характер возникновения звука. Звук появляется в результате колебаний. В четвертом опыте это можно еще и наглядно наблюдать. Острие иглы оставляет след в виде близком к синусоиде. При этом звук не появляется ниоткуда, а порождается источниками звука: линейкой, струной, камертоном.

2. Каким общим свойством обладают все источники звука?

Любой источник звука обязательно колеблется.

3. Механические колебания каких частот называются звуковыми и почему?

Звуковыми называются механические колебания с частотами от 16 Гц до 20 000 Гц, т.к. в данном частотном диапазоне они воспринимаются человеком.

4. Какие колебания называются ультразвуковыми? инфразвуковыми?

Колебания с частотами более 20 000 Гц называются ультразвуковыми, а с частотами ниже 16 Гц - инфразвуковыми.

5. Расскажите об измерении глубины моря методом эхолокации.

Упражнения.

1. Звук от взмахов крыльев летящего комара мы слышим. а летящей птицы - нет. Почему?

Частота колебаний крыльев комара 600 Гц (600 взмахов в секунду), воробья 13 ГЦ, а человеческое ухо воспринимает звуки от 16 Гц.

Прежде чем понять, какие источники звука бывают, задумайтесь, что такое звук? Мы знаем, что свет это излучение. Отражаясь от предметов, это излучение попадает к нам в глаза, и мы можем его видеть. Вкус и запах это маленькие частички тел, которые воспринимают наши соответствующие рецепторы. А звук это что за зверь?

Звуки передаются по воздуху

Вы наверняка видели, как играют на гитаре. Возможно, вы и сами умеете это делать. Важно другое звук в гитаре издают струны, если их дернуть. Все верно. А вот если бы вы могли поместить гитару в вакуум и дернуть струны, то вы бы очень удивились никакого звука гитара не издала бы.

Такие опыты проводились с самыми различными телами, и всегда результат был один никакого звука в безвоздушном пространстве не было слышно. Отсюда следует логичный вывод звук передается по воздуху. Следовательно, звук это нечто, происходящее с частицами веществ воздуха и издающих звук тел.

Источники звука - колеблющиеся тела

Далее. В результате самых разнообразных многочисленных экспериментов удалось установить, что звук возникает вследствие колебания тел . Источниками звука являются тела, которые колеблются. Эти колебания передаются молекулами воздуха и наше ухо, воспринимая эти колебания, интерпретирует их в понятные нам ощущения звука.

Проверить это не сложно. Возьмите стеклянный или хрустальный бокал и поставьте его на стол. Легонько стукните по нему металлической ложечкой. Вы услышите длинный тонкий звук. Теперь дотроньтесь рукой до бокала и стукните еще раз. Звук изменится и станет намного короче.

А теперь пусть несколько человек обхватят руками бокал максимально полностью, вместе с ножкой, стараясь не оставить ни одного свободного участка, кроме совсем маленького места для удара ложечкой. Вновь ударьте по бокалу. Вы почти не услышите никакого звука, а тот, что будет - получится слабым и очень коротким. О чем это говорит?

В первом случае после удара бокал свободно колебался, его колебания передавались по воздуху и достигали наших ушей. Во втором случае большая часть колебаний поглощалась нашей рукой, и звук стал гораздо короче, так как уменьшились колебания тела. В третьем случае практически все колебания тела моментально поглотились руками всех участников и тело почти не колебалось, а следовательно, звука почти не издавало.

То же самое касается всех иных экспериментов, которые вы можете придумать и провести. Колебания тел, передаваясь молекулам воздуха, будут восприниматься нашими ушами, и интерпретироваться мозгом.

Звуковые колебания разной частоты

Итак, звук это колебания. Источники звука передают звуковые колебания по воздуху к нам. Почему же тогда мы слышим далеко не все колебания всех предметов? А потому что колебания бывают разной частоты.

Воспринимаемый человеческим ухом звук это звуковые колебания частотой примерно от 16 Гц до 20 кГц. Дети слышат звуки более высоких частот, чем взрослые, а диапазоны восприятия различных живых существ вообще различаются очень сильно.

Цель урока: Сформировать представление о звуке.

Задачи урока:

Образовательные:

  • создать условия для активизации знаний учащихся о звуке, полученные при изучении естествознания,
  • способствовать расширению и систематизации знаний учащихся о звуке.

Развивающие:

  • продолжить развивать умение применять знания и собственный опыт в различных ситуациях,
  • способствовать развитию мышления, анализу полученных знаний, выделения главного, обобщения и систематизации.

Воспитательные:

  • способствовать формированию бережного отношения к себе и окружающим,
  • содействовать формированию гуманности, доброты, ответственности.

Тип урока: раскрывающий содержание.

Оборудование: камертон, шарик на нити, воздушный колокол, язычковый частотомер, набор дисков с разным количеством зубцов, открытка, линейка металлическая, мультимедийное оборудование, диск с презентацией , разработанной учителем к данному уроку.

Ход урока

Среди разнообразных колебательных и волновых движений, встречающихся в природе и технике, особо важное значение в жизни человека имеют звуковые колебания и волны, и просто звуки. В повседневной жизни – это чаще всего волны, распространяющиеся в воздухе. Известно, что звук распространяется и в других упругих средах: в земле, в металлах. Погрузившись с головой в воду, можно издали отчетливо услышать стук двигателя приближающегося катера. При осаде в крепостных стенах помещали «слухачей», которые следили за земляными работами противника. Иногда это были слепцы, у которых особенно обострен слух. По звукам, передающимся в Земле, был, например, своевременно обнаружен подкоп врага к стенам Загорского монастыря. Благодаря наличию у человека органа слуха он получает из окружающей среды с помощью звуков большую и разнообразную информацию. Посредством звуков осуществляется и человеческая речь.

Перед вами на столе находятся рабочие листы со строками из произведения Чарльза Диккенса «Сверчок за очагом». Каждый из вас должен подчеркнуть те слова, которые выражают звук.

1 вариант

  • Перепуганный косец пришел в себя только тогда, когда часы перестали трястись под ним, а скрежет и лязг их цепей и гирь окончательно прекратился. Немудрено, что он так разволновался: ведь эти дребезжащие, костлявые часы – не часы, а сущий скелет! – способны на кого угодно нагнать страху, когда начнут щелкать костями…
  • ….Тогда-то, заметьте себе, чайник и решил приятно провести вечерок. Что-то неудержимо заклокотало у него в горле, и он уже начал издавать отрывистое звонкое фырканье, которое тотчас обрывал, словно еще не решив окончательно, стоит ли ему сейчас показывать себя компанейским малым. Тогда-то, после двух-трех тщетных попыток заглушить в себе стремление к общительности, он отбросил всю свою угрюмость, всю свою сдержанность и залился такой уютной, такой веселой песенкой, что никакой плакса-соловей не мог за ним угнаться….
  • ….Чайник пел свою песенку так весело и бодро, что все его железное тело гудело и подпрыгивало над огнем; и даже сама крышка стала выплясывать что-то вроде джиги и стучать по чайнику (скрежет, лязг, дребезжащие, щелкать, звонкое фырканье, песенкой, залился, пел, гудело, стучать).

2 вариант:

  • Вот тут-то, если хотите, сверчок и вправду начал вторить чайнику! Он так громко подхватил припев на свой собственный стрекочущий лад – стрек, стрек, стрек! – голос его был столь поразительно несоразмерен с его ростом по сравнению с чайником, что если бы он тут же разорвался, как ружье, в которое заложен чересчур большой заряд, это показалось бы вам естественным и неизбежным концом, к которому он сам изо всех сил стремился.
  • ….Чайнику больше уже не пришлось петь соло. Он продолжал исполнять свою партию с неослабленным рвением, но сверчок захватил роль первой скрипки и удержал её. Боже ты мой, как он стрекотал! Тонкий, резкий, пронзительный голосок его звенел по всему дому и, наверное, даже мерцал, как звезда во мраке, за стенами. Иногда на самых громких звуках он пускал вдруг такую неописуемую трель, что невольно казалось – сам он высоко подпрыгивает в порыве вдохновения, а затем снова падает на ножки. Тем не менее они пели в полном согласии, и сверчок и чайник… Тема песенки оставалась все та же, и соревнуясь, они распевались все громче, и громче, и громче. (громко, припев, стрекочущий лад – стрек, стрек, стрек, разорвался, соло, стрекотал, резкий, пронзительный голосок, звенел, громких звуков, трель, пели, песенки, распевали, громче)

Мы живем в мире звуков. Раздел физики, изучающий звуковые явления, называется акустикой (слайд 1).

Источниками звука являются колеблющиеся тела (слайд 2) .

«Все, что звучит, обязательно колеблется, но не все, что колеблется, звучит».

Приведем примеры колеблющихся, но не звучащих тел. Язычки частотомера, длинная линейка. Какие примеры вы можете привести? (ветка на ветру, поплавок на воде и т.д.)

Укоротим линейку и услышим звук. Воздушный колокол также издает звуки. Докажем, что звучащее тело колеблется. Для этого возьмем камертон. Камертон представляет собой дугообразный стержень, закрепленный на держателе, ударим по нему резиновым молоточком. Поднеся звучащий камертон к маленькому шарику, висящему на нити, мы увидим, что шарик отклоняется.

Если провести звучащим камертоном по стеклу, покрытому сажей, мы увидим график колебаний камертона. Как называется такой график? (камертон совершает гармонические колебания )

Источниками звука могут быть жидкие тела, и даже газы. Воздух гудит в дымоходе и вода поет в трубах.

А какие примеры источников звука приведете вы? (механические часы, кипящий чайник, звук, издаваемый двигателем )

Когда тело звучит, оно колеблется, его колебания передаются близлежащим частицам воздуха, которые начинают колебаться и передают колебания соседним частицам, а те в свою очередь передают колебания дальше. В результате в воздухе образуются и распространяются звуковые волны.

Звуковая волна представляет собой зоны сжатия и разряжения упругой среды (воздуха), звуковая волна – продольная волна (слайд 3).

Мы воспринимаем звук благодаря нашему органу слуха – уху.

(Один из учеников рассказывает, как это происходит) (слайд 4).

(Другой ученик рассказывает о вреде наушников .)

«Изучая в течение двух месяцев поведение молодежи в столичном метрополитене, специалисты пришли к выводам, что в московском метро каждые 8 из 10 активных пользователей портативных электронных устройств слушают музыку. Для сравнения: при интенсивности звука в 160 децибел деформируются барабанные перепонки. Мощность звука, воспроизводимая плеерами через наушники, приравнивается к 110–120 децибел. Таким образом, на уши человека идет воздействие, равное тому, которое оказывается на человека, стоящего в 10 метрах от ревущего реактивного двигателя. Если такое давление на барабанные перепонки оказывается ежедневно, человек рискует оглохнуть. "За последние пять лет на прием стали чаще приходить молодые парни и девушки, – рассказала НИ отоларинголог Кристина Ананькина. – Все они хотят быть модными, постоянно слушать музыку. Однако длительное воздействие громкой музыки просто убивает слух". Если после рок-концерта организму нужно несколько дней, чтобы восстановиться, то при каждодневной атаке на уши времени на приведение слуха в порядок уже не остается. Слуховая система перестает воспринимать высокие частоты."Любой шум интенсивностью более 80 децибел негативно влияет на внутреннее ухо, – сообщает кандидат медицинских наук, сурдолог Василий Корвяков. – Громкая музыка поражает клетки, отвечающие за восприятие звука, особенно если атака идет прямо из наушников. Ситуацию ухудшает еще и вибрация в метро, которая также негативно влияет на структуру уха. В сочетании эти два фактора провоцируют острую тугоухость. Основная ее опасность в том, что она наступает буквально в одночасье, однако вылечить ее очень проблематично". Из-за шумового воздействия в нашем ухе отмирают волосковые клетки, отвечающие за передачу звукового сигнала в мозг. А способа восстановить эти клетки медицина пока не нашла».

Человеческое ухо воспринимает колебания частотой от 16–20000Гц. Все, что лежит до 16 Гц, – инфразвук, что после 20000Гц – ультразвук (слайд 6).

Сейчас мы прослушаем диапазон от 20 до 20000 Гц, и каждый из вас определит свой порог слышимости (слайд 5). (Генератор см. в Приложении 2)

Mногие животные слышат инфра- и ультра- звуки. Выступление учащегося (слайд 6).

Звуковые волны распространяются в твердых, жидких и газообразных телах, но не могут распространяться в безвоздушном пространстве.

Измерения показывают, что скорость звука в воздухе при 00С и нормальном атмосферном давлении равна 332 м/с. При повышении температуры скорость увеличивается. Для задач мы берем 340 м/с.

(Один из учеников решает задачу.)

Задача. Скорость звука в чугуне впервые была определена французским ученым Био следующим образом. У одного конца чугунной трубы ударяли в колокол, у другого конца наблюдатель слышал два звука: сначала – один, пришедший по чугуну, а, спустя некоторое время, – второй, пришедший по воздуху. Длина трубы 930 метров, промежуток времени между распространением звуков оказался равным 2,5с. Найдите по этим данным скорость звука в чугуне. Скорость звука в воздухе равна 340 м/с (Ответ: 3950 м/с).

Скорость звука в различных средах (слайд 7).

Мягкие и пористые тела – плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. Такими материалами являются: войлок, прессованная пробка, пористые камни, свинец. Звуковые волны в таких прослойках быстро затухают.

Мы видим, как многообразен звук, охарактеризуем его.

Звук, издаваемый гармонически колеблющимся телом, называется музыкальным тоном. Каждому музыкальному тону (до, ре, ми, фа, соль, ля, си) соответствует определенная длина и частота звуковой волны (слайд 8).

У нашего камертона тон ля, частота 440 Гц.

Шум – хаотическая смесь гармонических звуков.

Музыкальные звуки (тоны) характеризуются громкостью и высотой тона, тембром.

Слабый удар по ножке камертона вызовет колебания малой амплитудой, мы услышим тихий звук.

Сильный удар вызовет колебания с большей амплитудой, мы услышим громкий звук.

Громкость звука определяется амплитудой колебаний в звуковой волне (слайд 9).

Сейчас я буду вращать 4 диска, у которых разное количество зубцов. Я буду касаться открыткой этих зубцов. У диска с большими зубцами открытка колеблется чаще и звук выше. У диска с меньшим количеством зубцов открытка колеблется меньше и звук ниже.

Высота звука определяется частотой звуковых колебаний. Чем больше частота, тем выше звук. (слайд 10)

Самая высокая человеческая нота сопрано около 1300 Гц

Самая низкая человеческая нота басовая около 80 Гц.

У кого выше тон у комара или у шмеля? А как вы думаете, кто чаще машет крыльями комар или шмель.

Тембр звука – это своеобразная окраска звука, по которой мы различаем голоса людей различных инструментов (слайд 11).

Всякий сложный музыкальный звук состоит из ряда простых гармонических звуков. Самый низкий из них является основным. Остальные выше его в целое число раз, например, в 2 или 3–4 раза. Их называют обертонами. Чем больше к основному тону примешано обертонов, тем богаче будет звук. Высокие обертоны придают тембру «блеск» и «яркость» и «металличность». Низкие придают «мощность» и «сочность». А.Г.Столетов писал: «Простые тоны, какие мы имеем от наших камертонов – не употребляются в музыке, они так же пресны и безвкусны, как дистиллированная вода».

Закрепление

  1. Как называется учение о звуке?
  2. На Луне произошел сильный взрыв. Например, извержение вулкана. Услышим мы его на Земле?
  3. Голосовые связки колеблются с меньшей частотой у человека, поющего басом или тенором?
  4. При полете большинства насекомых издается звук. Чем он вызван?
  5. Как могли бы люди переговариваться на Луне?
  6. Почему при проверке колес вагонов во время остановки поезда их простукивают?

Домашнее задание: §34-38. Упражнение 30 (№ 2, 3).

Литература

  1. Курс физики, Ч II, для средней школы/Перышкин А.В. – М.: Просвещение, 1968. – 240с.
  2. Колебания и волны в курсе физике для средней школы. Пособие для учителей/Орехов В.П. – М.: Просвещение, 1977. – 176с.
  3. Сверчок за очагом/Диккенс Ч. – М.: Эксмо, 2003. – 640с.