Природа электромагнитных волн. Силы в природе - занимательная физика без формул. Постановка темы и целей урока

Существование электромагнитных волн было предсказано теоретически Максвеллом как прямое следствие из уравнений электромагнитного поля. Скорость электромагнитных волн в вакууме оказалась равной величине . Её числовые значения почти совпало со скоростью света в вакууме, равной, по измерениям Физо в 1849 г. 3,15× 108 м/с. Другое важное совпадение в свойствах электромагнитных волн и света обусловлено поперечностью волн. Поперечность электромагнитных волн следует из уравнений Максвелла, а поперечность световых волн – из экспериментов по поляризации света (Юнг 1817г.). Эти два факта привели Максвелла к заключению, что свет представляет собой электромагнитные волны.

Уравнения Максвелла для вакуума при отсутствии токов (J = 0) и зарядов (r = 0) и имеют следующий вид

Где e0 и m0 – соответственно электрическая и магнитная постоянные. Уравнение (1) показывает, что магнитное поле порождается переменным электрическим полем. Уравнение (2) представляет собой математическую формулировку закона электромагнитной индукции. Следующее уравнение выражает факт отсутствия статического электрического поля в вакууме. Уравнение (4) постулирует отсутствие магнитных зарядов. Применяя к обеим частям уравнения (1) операцию Rot , получаем

, (6)

Где учтены соотношения (5) и принято во внимание, что порядок дифференцирования по независимым переменным (пространственным координатам и времени) можно изменить. Применяя известное из векторного анализа соотношение для дифференциальных операторов, запишем

Здесь D – оператор Лапласа, который в декартовых координатах записывается в виде

Поскольку в рассмотренном случае то из соотношения (6) с учётом уравнения (2) получаем уравнение для вектора :

, (7)

Где — скорость света в вакууме.

Аналогично, применяя операцию rot к обеим частям равенства (2), получим уравнение для оператора :

(8)

Уравнения (7), (8) линейны по полю. Поэтому они эквивалентны совокупности скалярных уравнений такого же вида, в каждое из которых входит только одна декартова компонента напряжённости электрического или магнитного поля

и (a = x, y, Z ) (9)

Уравнения (7), (8), (9) называются волновыми уравнениями. Их решения имеют характер распространяющихся волн.

Плоская волна.

Предположим, что произвольная компонента поля Ф (например, Еα или Нα) зависит лишь от одной пространственной координаты, например Z , и времени, т. е. Ф = Ф(Z ,T ). Тогда уравнение (9) упростится и примет вид

(10)

Уравнению (10) удовлетворяет функция вида:

Где Ф1 и Ф2 – произвольные (дифференцируемые) функции своих аргументов.

Формула (11) выражает общее решение уравнения (10). Она описывает суперпозицию двух волн. Первая из них распространяется вдоль, а вторая – против оси Z . Скорости обеих волн одинаковы и равны С . Действительно, возмущение Ф1, находившееся в момент времени T 1в точке Z 1, в момент T 2 приходит в точку Z 2, определяемую соотношением T 1 – z1/c = t2 – Z 2/C . Отсюда при T 2 > T 1 имеем z2 > z1 и скорость распространения волнового возмущения равна V = (z2 – z1)/(t2 – t1) = c.

Функции Ф1 = Ф(Z , T ) и Ф2 = Ф2(Z , T ) описывают плоские волны, так как волновое возмущение имеет одно и то же значение во всех точках бесконечной плоскости, перпендикулярной направлению распространения. Конкретный вид функций Ф1 и Ф2 определяется начальными и граничными условиями задачи.

Конкретизируем закон изменения светового поля во времени и в пространстве. Рассмотрим, например, декартову компоненту поля E (Z , T ). Пусть при Z = 0 E (0, T ) = А Cos(wt), т. е. напряжённость светового поля изменяется по гармоническому закону. Тогда в соответствии с (11) в области с Z ≥0 будет распространятся плоская гармоническая волна

В этом выражении Е 0 – амплитуда волны, w - круговая частота, связанная с периодом Т и частотой колебаний n = 1/Т соотношениями

Параметры K и Z , определяемые как

Есть соответственно волновое число и длина волны. Величина j = wT Kz называется полной фазой волны и зависит от T и Z . Фазу j = Kz , связанную с изменением пути, пройденного волной, называют набегом фазы или фазовым сдвигом.

Геометрическое место точек с одинаковым значением фазы называют волновым фронтом. В плоской гармонической волне волновой фронт представляет собой плоскость, перпендикулярную направлению распространения.

Пусть плоская гармоническая волна распространяется в произвольном направлении, задаваемом единичным вектором . Поверхности постоянных фаз имеют вид плоскостей, перпендикулярных вектору (рис. 1). Введём волновой вектор

Вектор указывает направление распространения волны, а его модуль равен волновому числу K = w/C . Обозначим расстояние, пройденное волной в направлении через x и проведём вектор из начала координат в произвольную точку волнового фронта. Тогда, как видно из рис. 1,

Используя последнее соотношение, получаем

Теперь поле волны можно представить в виде

При гармоническом изменении во времени напряжённостей электрического и магнитного полей частота остаётся постоянной. В оптике часто говорят не о гармонических, а о Монохроматической волне. Монохроматический означает “одноцветный”. Термин этот возник потому, что в видимом диапазоне глаз регистрирует изменение частоты излучения как изменение цвета.

В дальнейшем для зависимости напряжённости поля в волне от координат и времени вместо (13) удобно использовать комплексную запись, принимая во внимание формулу Эйлера

Величина Е 0 в (14) может быть как действительной, так и комплексной. Учитывая, что в общем случае:

И tg j = Im(E 0)/Re(E 0), запишем выражение (14) в виде

,

Где |E 0| — амплитуда плоской волны, j – начальная фаза колебаний в точке = 0. Знак “Re” и знак модуля при записи будем опускать, не забывая, однако, о том, что физический смысл имеет лишь вещественная часть используемых комплексных выражений.

(15)

Комплексная запись особенно удобна потому, что при её использовании дифференцирование напряжённости поля по времени ¶/¶T сводится, как видно из (15), просто к умножению на iw. Скалярное произведение можно записать в виде (Kx ·X + Ky ·X + Kz ·X ), поэтому дифференцирование , например, по координате x сводится к умножению на Ikx .

Нетрудно убедиться, что уравнениям (9) удовлетворяют и волны вида

В которых напряжённости полей зависят только от одной пространственной переменной – модуля радиус-вектора.

Такие волны называют сферическими.

Рассмотрим скалярное волновое уравнение

И будем искать его решение вида Ф = Ф(T ,R ). Для сферически симметричной функции Ф оператор Лапласа имеет вид

Поэтому волновое уравнение перепишется следующим образом

Введём вспомогательную функцию F = R Ф. Тогда последнее уравнение преобразуется к виду, аналогичному (10):

И, следовательно, его общее решение представится в виде суперпозиции двух волн, бегущих во взаимно противоположных направлениях:

Возвращаясь к искомой функции Ф, получим

(16)

Выражение (16) описывает две сферические волны. Первое слагаемое представляет собой волну, движущуюся в направлении увеличения значений r, т. е. от центра, где расположен точечный источник. Такая волна называется Расходящейся . Второе слагаемое описывает волну, движущуюся в направлении уменьшения значения r, т. е. к центру. Такая волна называется Сходящейся . Значение Ф в фиксированный момент времени на сфере постоянного радиуса являтся постоянным.

Если на сфере радиуса r0 задать гармоническое возмущение, синфазное во всех точках сферы

,

То возбуждаемая таким источником расходящаяся волна при r > r0 может быть представлена в виде:

Здесь в отличие от плоской волны амплитуда зависит от координаты, а фазовый и амплитудный фронты представляет собой сферы.

В комплексном представлении расходящаяся сферическая волна запишется так:

(18)

Наряду с плоской, сферическая гармоническая волна является эталонной волной, имеющей большое значение для оптики. Поэтому и сделан особый акцент на описание этих волновых процессов. Хотя сами по себе эти волны являются в значительной степени математической абстракцией, их роль в описании оптических явлений трудно переоценить. Во многих случаях реальный световой пучок можно разложить в спектр по плоским гармоническим волнам. Излучение реальной среды, состоящей из возбуждённых атомов и молекул, часто можно представить как суперпозицию сферических волн.

Для анализа структуры плоской электромагнитной волны удобно записать уравнения Максвелла в символической форме с помощью векторного дифференциального оператора “набла”.

,

Где — единичные векторы, направленные вдоль осей X , Y , Z декартовой системы координат.

Принимая во внимание, что для произвольного векторного поля

Уравнения Максвелла (1) – (4) можно записать так:

(19)

Будем искать решение этих уравнений в виде плоских гармонических волн

(23)

(24)

Где и – постоянные векторы, не зависящие от времени, но компоненты которых могут быть комплексными. Подставляя выражения (23) и (24) в уравнение (19) – (22) и учитывая, что

Получаем следующие соотношения:

(25)

Спектр электромагнитных волн.

Электромагнитные волны классифицируются по длине волны лямбда или связанной с ней частотой волны f. Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в данном томе, а во втором - квантовыми законами, изучаемыми в томе 5 настоящего пособия.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

1) Радиоволны;

2) Инфракрасное излучение;

3) Световое излучение;

4) Рентгеновское излучение;

5) Гамма излучение.

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

Рассмотрим спектр электромагнитных волн более подробно.

Радиоволны.

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм(частота меньше 3 10 12 гц = 3000 Ггц).

Радиоволны делятся на:

1. Сверхдлинные волны с длиной волны больше 10км(частота меньше 3 10 4 гц=30кгц);

2. Длинные волны в интервале длин от10км до 1км(частота в диапазоне 3 10 4 гц - 3 10 5 гц=300кгц);

3. Средние волны в интервале длин от1км до 100м(частота в диапазоне 3 10 5 гц -310 6 гц=3мгц);

4. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);

5. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).

Ультракороткие волны в свою очередь делятся на:

а) метровые волны;

б) сантиметровые волны;

в) миллиметровые волны;

г) субмиллиметровые или микрометровые.

Волны с длиной волны меньше, чем 1м(частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).

Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла. Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.

Инфракрасное и световое излучения.

Инфракрасное , световое , включая ультрафиолетовое , излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов.

Оптический спектр занимает диапазон длин электромагнитных волн в интервале от 210 -6 м= 2мкм до 10 -8 м=10нм (по частоте от1.510 14 гц до 310 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Рис. 1.14.

Ширина оптического диапазона по частоте составляет примерно 18 октав 1 , из которых на оптический диапазон приходится примерно одна октава(); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Рентгеновское и гамма излучение.

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.

Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии 2 , соответствующего данной частоте излучения.

Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.

Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света.

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.

Гармонические электромагнитные волны светового диапазона называются монохроматическими . Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:

где - вектор Пойнтинга.

Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:

где - коэффициент преломления среды; - волновое сопротивление вакуума.

Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим . Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.

Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.

В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .

Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.

Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.

Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала , а в аналитической механике как уравнение Гамильтона - Якоби :

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.

В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений дуализма света, приведшего, как известно, к формулировке основных принципов квантовой механики.

Шкала электромагнитных волн

Наименование

Длина, м

Частота, Гц

Сверхдлинные

3*10 2 - 3*10 4

Длинные (радиоволны)

3*10 4 - 3*10 5

Средние(радиоволны)

3*10 5 - 3*10 6

Короткие(радиоволны)

3*10 6 - 3*10 7

Ультракороткие

3*10 7 - 3*10 9

Телевидение (СВЧ)

3*10 9 - 3*10 10

Радиолокация (СВЧ)

3*10 10 - 3*10 11

Инфракрасное излучение

3*10 11 - 3*10 14

Видимый свет

3*10 14 - 3*10 15

Ультрафиолетовое излучение

3*10 15 - 3*10 17

Рентгеновское излучение(мягкое)

3*10 17 - 3*10 20

Гамма-излучение (жесткое)

3*10 20 - 3*10 22

Космические лучи

Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет - это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон - почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные - сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона. С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, а кое-что в нем даже просто неверно, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебаний нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны. Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна - волны получаются чисто электрическими, а не электромагнитными.

Тут самое время вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, а изменяющееся магнитное - электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно - это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но давайте остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, а все основные моменты уже ясны из нашей модели. Главный из них - независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но вдали от него распространяются совершенно самостоятельно. Что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну - ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.

Страница 1

План

1. Вступление

2. Понятие волна и ее характеристики

3. Электромагнитные волны

4. Экспериментальное доказательство существования электромагнитных волн

5. Плотность потока электромагнитного излучения

6. Изобретение радио

7. Свойства электромагнитных волн

8. Модуляция и детектирование

9. Виды радиоволн и их распространение

Вступление

Волновые процессы чрезвычайно широко распространены в природе. В природе существует два вида волн: механические и электромагнитные. Ме­ханические волны распространяются в веществе: газе, жидкости или твердом теле. Электромагнитные волны не нуждаются в каком-либо веществе для своего распростра­нения, к которым, в частности, от­носятся радиоволны и свет. Электромагнитное поле может су­ществовать в вакууме, т. е. в пространстве, не содержащем ато­мов. Несмотря на существенное отличие электромагнитных волн от механических, электромагнитные волны при своем распростра­нении ведут себя подобно механическим. Но подобно колебаниям все виды волн описываются количественно одинаковыми или почти одинаковыми законами. В своей работе я постараюсь рассмотреть причины возникновения электромагнитных волн, их свойства и применение в нашей жизни.

Понятие волна и ее характеристики

Волной называют колебания, распростра­няющиеся в пространстве с течением времени.

Важнейшей ха­рактеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна.

При распространении механической волны движе­ние передается от одного участка тела к другому. С передачей движения связана передача энергии. Ос­новное свойство всех волн незави­симо от их природы состоит в пере­носе ими анергии без переноса вещества. Энергия поступает от источ­ника, возбуждающего колебания на­чала шнура, струны и т. д., и распро­страняется вместе с волной. Через любое поперечное сечение непрерывно течет энергия. Эта энергия слагается из кинети­ческой энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю.

Если заставить конец растянутого резинового шнура колебаться гармонически с опреде­ленной частотой v, то эти колеба­ния начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же часто­той и амплитудой, что и колебания конца шнура. Но только эти колеба­ния сдвинуты по фазе друг относи­тельно друга. Подобные волны назы­ваются монохроматическими .

Если сдвиг фаз между колеба­ниями двух точек шнура равен 2п, то эти точки колеблются совершенно одинаково: ведь соs(2лvt+2л) = =соs2пvt. Такие колебания назы­ваются синфазными (происходят в одинаковых фазах).

Расстояние между ближайшими друг к другу точками, колеблющими­ся в одинаковых фазах, называется длиной волны.

Связь между длиной волны λ, частотой v и скоростью распростра­нения волны c. За один период ко­лебаний волна распространяется на расстояние λ. Поэтому ее скорость определяется формулой

Так как период Т и частота v свя­заны соотношением T = 1 / v

Скорость волны равна произведению длины волны на частоту колебаний.

Электромагнитные волны

Теперь перейдем к рассмотрению непосредственно электромагнитных волн.

Фунда­ментальные законы природы могут дать гораздо боль­ше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Макс­веллом законы электромагнетизма.

Среди бесчисленных, очень инте­ресных и важных следствий, выте­кающих из максвелловских законов электромагнитного поля, одно заслу­живает особого внимания. Это вы­вод о том, что электромагнитное взаимодействие распространяется с конечной скоростью.

Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д.

Перемещение заряда вызывает, таким образом, «всплеск» электро­магнитного поля, который, распространяясь, охватывает все большие области окружающего пространства.

Максвелл математически дока­зал, что скорость распространения этого процесса равна скорости све­та в вакууме.

Пред­ставьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой. Тогда элек­трическое поле в непосредственной близости от заряда начнет периоди­чески изменяться. Период этих изме­нений, очевидно, будет равен периоду колебаний заряда. Переменное элек­трическое поле будет порождать пе­риодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного элек­трического поля уже на большем расстоянии от заряда и т.д.

В каждой точке пространства электрические и магнитные поля ме­няются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее ко­лебания полей. Следовательно, на разных расстояниях от заряда коле­бания происходят с различными фа­зами.

Направления колеблющихся век­торов напряженности электрическо­го поля и индукции магнитного по­ля перпендикулярны к направлению распространения волны.

Электромагнитная волна является поперечной.

Электромагнитные волны излу­чаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со временем, т. е. что они движутся с ускорением. Наличие ускорения - главное условие излучения электро­магнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости. Интенсивность излу­ченной волны тем больше, чем боль­ше ускорение, с которым движется заряд.

Максвелл был глубоко убежден в реальности электромагнитных волн. Но он не дожил до их эксперимен­тального обнаружения. Лишь через 10 лет после его смерти электро­магнитные волны были экспериментально получены Герцем.


Все волновые процессы описываются с помощью однотипных математических уравнений. Свойства, проявляемые волнами, также одинаковы и присущи волнам любой природы.

К важнейшим волновым свойствам относятся интерференция и дифракция.

Интерференция – наложение двух волн, при котором происходит устойчивое во времени усиление волн в одних точках пространства и ослабление – в других. Интерференцией объясняются, например, радужные полосы на мыльных пузырях, поверхностях луж, на крыльях насекомых.

Необходимое условие образования и устойчивости интерференционной картины – когерентность волн, т.е. точное совпадение их частот и постоянство во времени амплитуд. Равенство амплитуд не обязательно, оно влияет только на контрастность картины.

Естественные источники волн не являются когерентными, для получения с их помощью интерференционной картины приходится прибегать к различным приемам – разделять волну от одного источника на части. Высокую степень когерентности имеет излучение лазеров.

Дифракция – явление, состоящее в огибании волной пространственных неоднородностей. Волна, таким образом, попадает в область геометрической тени. Для того, чтобы наблюдалась дифракция, необходимо, чтобы размеры неоднородностей были сравнимы с длиной волны: d ~ l . Так, волна от брошенного в воду камня испытает дифракцию на свае или камне, выступающих над поверхностью воды, но «не заметит» тонкого стебля осоки.

Интерференция и дифракция – типично волновые свойства. Верно и обратное: если наблюдаются эти явления, то объект можно с уверенностью считать волной. Эти утверждения оказались чрезвычайно плодотворными при изучении явлений микромира.

Электромагнитные волны в природе и технике.

Нагляднее всего мы представляем себе волны, когда говорим о волнах на воде. Однако даже их мы видим благодаря электромагнитным волнам – свету. В природе и технике это – самые распространенные волны благодаря очень широкому диапазону возможных частот и длин волн. Порождаются электромагнитные волны всегда электрическим зарядами, которые движутся неравномерно (т.е. с ускорением). Электромагнитные волны всегда поперечны.

Приведем шкалу электромагнитных волн , обозначив их происхождение. Границы участков шкалы достаточно условны, вопрос о том, к какому типу отнести волну, решается прежде всего ее природой.

· Радиоволны 10 км > l > 1 мм – порождаются переменным электрическим током. Диапазон 1 м > l > 1 мм называется микроволнами (волнами СВЧ).

· Оптические волны 1 мм > l > 1 нм – порождаются хаотическим тепловым движением молекул, переходами электронов внутри атомов.

· Рентгеновские волны 10 -8 м > l > 10 -12 м возникают при торможении электронов в веществе.

· Гамма-излучение l < 10 -11 м возникает при ядерных реакциях.

Оптический диапазон длин волн делится на инфракрасную (ИК-), видимую и ультрафиолетовую (УФ-) области . Человеческий глаз воспринимает узкую часть спектра: 0.78 мкм > l > 0.38 мкм. Лучше всего человек воспринимает l = 555 нм (желто-зеленый свет).

Автоволны.

Особый тип волн может существовать в активных средах или в средах, поддерживаемых энергетически. За счет внутренних источников среды или за счет подпитки энергией извне волна может распространяться без затухания и без изменения своих характеристик . Такие самоподдерживающиеся волны в нелинейных средах получили название автоволн (Р.В.Хохлов).

Автоволны были открыты при реакциях горения, при передаче возбуждения по нервным волокнам, мышцам, сетчатке глаза, при анализе численности биологических популяций и т.д.

Обязательным условием существования автоволн является нелинейность среды, т.е. зависимость свойств среды от характеристик волны. Волна как бы сама определяет количество энергии, необходимое для поддержания ее характеристик, и тем самым осуществляет обратную связь .

Лекция 10.

Законы микромира. Корпускулярно-волновой дуализм материи. Принцип дополнительности и проблемы причинности.

Гипотеза квантов энергии М.Планка.

Волновые свойства, присущие свету, были известны уже давно, с XVII века. Тем не менее лишь во 2-й половине ХIХ в. было окончательно доказано, что свет – это электромагнитная волна.

Однако существовал ряд явлений, которые не удавалось объяснить с позиций волновой природы света. Среди этих явлений – давление света , который легко демонстрируется на опыте, и фотоэффект , детально изученный П.Н.Лебедевым. Фотоэффект состоит в выбивании светом с поверхности металла электронов; появляется электрический ток, называемый фототоком. Закономерности фотоэффекта таковы, что вызывающее его излучение естественнее рассматривать как поток неких частиц, нежели как волну.

Еще одна проблема, которую не удавалось разрешить исходя из волновой теории света, получила у современников название «ультрафиолетовая катастрофа». Волновая теория предсказывает, что энергия теплового излучения (т.е. электромагнитной волны, испускаемой любым телом вследствие теплового движения его молекул) должна быть тем больше, чем больше его частота. Значит, в УФ диапазоне длин волн должно излучаться столько энергии, что тело потратит всю свою энергию на тепловое излучение. Эксперимент же показывал полное расхождение с классической волновой теорией. Реальное тепловое излучение зависит от частоты не монотонно, имеется частота, на которой интенсивность излучения максимальна, при высоких и низких частотах она стремится к 0. Следовательно, классическая волновая теория неадекватно описывала тепловое излучение.

В 1900 г. М.Планк выдвинул гипотезу, согласно которой нагретое тело излучает энергию не непрерывно, а отдельными порциями, которые в 1905 г. получили название кванты . Энергия одного кванта пропорциональна частоте излучения:

постоянная h = 6.63 10 -34 Дж с, ћ = ћ/2p = 1.055 10 -34 Дж с – постоянные Планка. (Заметим, что размерность ћ совпадает с размерностью момента импульса. Величину ћ называют иногда «квантом действия»).

Постоянная Планка – одна из фундаментальных физических констант. Наш мир таков, каков он есть, в частности, потому, что ћ имеет именно такое, а не какое-то иное значение.

Таким образом, волна, которая ранее считалась непрерывной, была представлена в дискретном виде. Эта гипотеза оказалась весьма плодотворной и позволила количественно описать тепловое излучение в полном соответствии с экспериментом. В развитие гипотезы Планка было предположено, что волна не только испускается, но и распространяется и поглощается в виде квантов. Однако было непонятно, является ли дискретный характер излучения свойством самого излучения или это – результат его взаимодействия с веществом. Первым, кто понял, что дискретность – неотъемлемое свойство излучения, - был Эйнштейн, применивший это представление при исследовании фотоэффекта.

Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет - это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон - почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные - сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона. С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, а кое-что в нем даже просто неверно, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебаний нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны. Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна - волны получаются чисто электрическими, а не электромагнитными.

Тут самое время вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, а изменяющееся магнитное - электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно - это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но давайте остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, а все основные моменты уже ясны из нашей модели. Главный из них - независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но вдали от него распространяются совершенно самостоятельно. Что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну - ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.