Кто открыл индукцию. Открытие электромагнитной индукции сделало возможным появление. Явление электромагнитной индукции. Открытие, опыт, применение

До сих пор мы рассматривали электрические и магнитные поля, не изменяющиеся с течением времени. Было выяснено, что электрическое поле создается электрическими зарядами, а магнитное поле - движущимися зарядами, т. е. электрическим током. Перейдем к знакомству с электрическим и магнитным полями, которые меняются со временем.

Самый важный факт, который удалось обнаружить, - это теснейшая взаимосвязь между электрическим и магнитным полями. Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле порождает магнитное. Без этой связи между полями разнообразие проявлений электромагнитных сил не было бы столь обширным, каким оно является на самом деле. Не существовало бы ни радиоволн, ни света.

Не случайно первый, решающий шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Благодаря этому он сделал открытие, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока. (Другие источники: гальванические элементы, аккумуляторы и др. - дают ничтожную долю вырабатываемой энергии.)

Электрический ток, рассуждал Фарадей, способен намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока?

Долгое время эту связь обнаружить не удавалось. Трудно было додуматься до главного, а именно: только движущийся магнит или меняющееся во времени магнитное поле может возбудить электрический ток в катушке.

Какого рода случайности могли помешать открытию, показывает следующий факт. Почти одновременно с Фарадеем швейцарский физик Колладон пытался получить электрический ток в катушке с помощью магнита. При работе он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, в которую Колладон вдвигал магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением

убеждался, что гальванометр не показывает тока. Стоило бы ему все время наблюдать за гальванометром и попросить кого-нибудь заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. Оно было открыто 29 августа 1831 г. Редкий случай, когда дата нового замечательного открытия известна так точно. Вот описание первого опыта, данное самим Фарадеем:

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удавалось заметить внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи» (Фарадей М. «Экспериментальные исследования по электричеству», 1-я серия).

Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек друг

относительно друга. Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита. В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции.

В настоящее время опыты Фарадея может повторить каждый. Для этого надо иметь две катушки, магнит, батарею элементов и достаточно чувствительный гальванометр.

В установке, изображенной на рисунке 238, индукционный ток возникает в одной из катушек при замыкании или размыкании электрической цепи другой катушки, неподвижной относительно первой. В установке на рисунке 239 с помощью реостата меняется сила тока в одной из катушек. На рисунке 240, а индукционный ток появляется при движении катушек друг относительно друга, а на рисунке 240, б - при движении постоянного магнита относительно катушки.

Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих площадь, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, пронизывающих площадь неподвижного проводящего контура вследствие изменения силы тока в соседней катушке (рис. 238), и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 241).

Тема урока:

Открытие электромагнитной индукции. Магнитный поток.

Цель: ознакомить учащихся с явлением электромагнитной индукции.

Ход урока

I. Организационный момент

II. Актуализация знаний.

1. Фронтальный опрос.

  • В чем заключается гипотеза Ампера?
  • Что такое магнитная проницаемость?
  • Какие вещества называют пара- и диамагнетиками?
  • Что такое ферриты?
  • Где применяются ферриты?
  • Откуда известно, что вокруг Земли существует магнитное поле?
  • Где находится Северный и Южный магнитные полюса Земли?
  • Какие процессы происходят в магнитосфере Земли?
  • Какова причина существования магнитного поля у Земли?

2. Анализ экспериментов.

Эксперимент 1

Магнитную стрелку на подставке поднесли к нижнему, а затем к верхнему концу штатива. Почему стрелка поворачивается к нижнему концу штатива с любой стороны южным полюсом, а к верхнему концу - северным концом? (Все железные предметы находятся в магнитном поле Земли. Под действием этого поля они намагничиваются, причем нижняя часть предмета обнаруживает северный магнитный полюс, а верхняя - южный.)

Эксперимент 2

В большой корковой пробке сделайте небольшой желобок для куска проволоки. Пробку опустите в воду, а сверху положите проволоку, располагая ее по параллели. При этом проволока вместе с пробкой поворачивается и устанавливается по меридиану. Почему? (Проволока была намагничена и устанавливается в поле Земли как магнитная стрелка.)

III. Изучение нового материала

Между движущимися электрическими зарядами действуют магнитные силы. Магнитные взаимодействия описываются на основе представления о магнитном поле, существующем вокруг движущихся электрических зарядов. Электрические и магнитные поля порождаются одними и теми же источниками - электрическими зарядами. Можно предположить, что между ними есть связь.

В 1831 г. М. Фарадей подтвердил этот экспериментально. Он открыл явление электромагнитной индукции (слайды 1,2) .

Эксперимент 1

Гальванометр подсоединяем к катушке, и будем выдвигать из нее постоянный магнит. Наблюдаем отклонение стрелки гальванометра, появился ток (индукционный) (слайд 3).

Ток в проводнике возникает, когда проводник оказывается в области действия переменного магнитного поля (слайд 4-7) .

Переменное магнитное поле Фарадей представлял как изменение числа силовых линий, пронизывающих поверхность, ограниченную данным контуром. Это число зависит от индукции В магнитного поля, от площади контура S и его ориентации в данном поле.

Ф=BS cos a - магнитный поток.

Ф [Вб] Вебер (слайд 8)

Индукционный ток может иметь разные направления, которые зависят от того, убывает или возрастает магнитный поток, пронизывающий контур. Правило, позволяющее определить направление индукционного тока, было сформулировано в 1833,г. Э. X. Ленцем.

Эксперимент 2

В легкое алюминиевое кольцо вдвигаем постоянный магнит. Кольцо отталкивается от него, а при выдвигании притягивается к магниту.

Результат не зависит от полярности магнита. Отталкивание и притягивание объясняется возникновением в нем индукционного тока.

При вдвигании магнита магнитный поток через кольцо возрастает: отталкивание кольца при этом показывает, что индукционный ток в нем имеет такое направление, при котором вектор индукции его магнитного поля противоположен по направлению вектору индукции внешнего магнитного поля.

Правило Ленца:

Индукционный ток имеет всегда такое направление, что его магнитное поле препятствует любым изменениям магнитного потока, вызывающим появление индукционного тока (слайд 9) .

IV. Проведение лабораторной работы

Лабораторная работа по теме «Опытная проверка правила Ленца»

Приборы и материалы: миллиамперметр, катушка-моток, магнит дугообразный.

Ход работы

  1. Приготовьте таблицу.

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

Майкл Фарадей (1791-1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать - дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.

В нескольких шагах от дома, в котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет. Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами.

Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика.

Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал «Историю успехов электромагнетизма». Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока.

Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода. В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики - он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость. В 1824 году Фарадей сделал несколько открытий в области физики.

Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках». Многие из этих работ могли сами- по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции.

Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки.

Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества. По своему обыкновению Фарадей начал ряд опытов, долженствовавших выяснить суть дела.

На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой - с чувствительным гальванометром. Когда был пропущен ток через первую проволоку,

Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом.

Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение.

Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), - индукция, и новый вид этой энергии - индукционное электричество.

Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились.

Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока. Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа?

Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток.

Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая - вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи - на этот раз: уже под влиянием магнетизма.

Таким образом, здесь впервые магнетизмбыл превращен в электричество. Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда! возбуждался ток в момент намагничивания и размагничивания железа.

Затем Фарадей вносил в проволочную спираль стальной магнит - приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных, токов, действовал совершенно так же, как и гальванический ток.

В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на; то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель.

Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним.

В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного.

Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом.

И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.

Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал основы в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление.

Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.

Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока.

Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток.

Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения.

Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток.

И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра. Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя».

Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

Русский физик Эмиль Христофорович Ленц (1804-1861) дал правило для определения направления индукционного тока. «Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, - отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. - Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания.

Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.

Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции даланглийский физик Джемс Клерк Максвелл - творец законченной математической теории электромагнитного поля.

Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл.

При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь - возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле. Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток - это просто прибор, позволяющий обнаружить электрическое поле.

Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения. А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века - на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире...

Источник информации: Самин Д. К. «Сто великих научных открытий»., М.:«Вече», 2002 г.

Сегодня мы расскажем о явлении электромагнитной индукции. Раскроем, почему этот феномен был открыт и какую пользу принес.

Шелк

Люди всегда стремились жить лучше. Кто-то может подумать, что это повод обвинить человечество в алчности. Но часто речь идет об обретении элементарного бытового удобства.

В средневековой Европе умели делать ткани шерстяные, хлопковые и льняные. А еще в то время люди страдали от избытка блох и вшей. При этом в китайской цивилизации уже научились виртуозно ткать шелк. Одежда из него не подпускала кровососов к коже человека. Лапки насекомых скользили по гладкой ткани, и вши сваливались. Поэтому европейцы захотели во что бы то ни стало одеваться в шелк. А торговцы подумали, что это еще одна возможность разбогатеть. Поэтому был проложен Великий шелковый путь.

Только так желанную ткань доставляли страждущей Европе. И настолько много людей вовлекались в процесс, что в результате возникали города, империи спорили за право взимать налоги, а некоторые отрезки пути до сих пор наиболее удобный способ добраться до нужного места.

Компас и звезда

На пути караванов с шелком вставали горы и пустыни. Бывало, что характер местности оставался прежним недели и месяцы. Степные дюны сменялись такими же холмами, один перевал следовал за другим. И людям надо было как-то ориентироваться, чтобы доставить свой ценный груз.

Первыми на выручку пришли звезды. Зная, какой сегодня день, и каких созвездий ожидать, опытный путешественник всегда мог определить, где юг, где восток, и куда идти. Но людей с достаточным объемом знаний всегда не хватало. Да и время точно отсчитывать тогда не умели. Закат солнца, восход - вот и все ориентиры. А снежная или песчаная буря, пасмурная погода исключали даже возможность видеть полярную звезду.

Потом люди (вероятно, древние китайцы, но ученые еще спорят на этот счет) поняли, что один минерал всегда определенным образом расположен по отношению к сторонам света. Это свойство использовалось, чтобы создать первый компас. До открытия явления электромагнитной индукции было далеко, но начало было положено.

От компаса к магниту

Само название «магнит» восходит к топониму. Вероятно, первые компасы делались из руды, добываемой в холмах Магнезии. Эта область располагается в Малой Азии. И выглядели магниты как черные камни.

Первые компасы были весьма примитивными. В чашу или другую емкость наливалась вода, сверху клался тонкий диск из плавучего материала. А в центр диска помещалась намагниченная стрелка. Один ее конец всегда указывал на север, другой - на юг.

Трудно даже представить себе, что караван сохранял воду для компаса, пока от жажды умирали люди. Но не потерять направление и позволить людям, животным и товару добраться до безопасного места было важнее нескольких отдельных жизней.

Компасы проделывали множество путешествий и встречались с различными феноменами природы. Неудивительно, что явление электромагнитной индукции было открыто в Европе, хотя магнитная руда первоначально добывалась в Азии. Вот таким замысловатым образом желание европейских жителей спать удобнее привело к важнейшему открытию физики.

Магнитное или электрическое?

В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.

В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.

Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.

Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит - стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.

Продолжение опытов

Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.

Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.

Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.

Формула

Закон Фарадея для электромагнитной индукции выражается формулой

Расшифруем символы.

ε обозначает ЭДС или электродвижущую силу. Эта величина скалярная (то есть не векторная), и она показывает работу, которую прикладывают некие силы или законы природы, чтобы создать ток. Надо отметить, что работу должны совершать непременно неэлектрические явления.

Φ - это магнитный поток сквозь замкнутый контур. Данная величина является произведением двух других: модуля вектора магнитной индукции В и площади замкнутого контура. Если магнитное поле действует на контур не строго перпендикулярно, то к произведению добавляется косинус угла между вектором В и нормалью к поверхности.

Последствия открытия

За этим законом последовали другие. Последующие ученые устанавливали зависимости напряженности электрического тока от мощности, сопротивления от материала проводника. Изучались новые свойства, создавались невероятные сплавы. Наконец, человечество расшифровало структуру атома, вникло в тайну рождения и смерти звезд, вскрыло геном живых существ.

И все эти свершения требовали огромного количества ресурсов, а, прежде всего, электричества. Любое производство или большое научное исследование проводились там, где были доступны три составляющие: квалифицированные кадры, непосредственно материал, с которым надо работать и дешевая электроэнергия.

А это было возможно там, где силы природы могли придавать большой момент вращения ротору: реки с большим перепадом высот, долины с сильными ветрами, разломы с избытком геомагнитной энергии.

Интересно, что современный способ получать электричество не отличается принципиально от опытов Фарадея. Магнитный ротор очень быстро вращается внутри большой катушки проволоки. Магнитное поле в обмотке все время меняется и генерируется электрический ток.

Конечно, подобраны и наилучший материал для магнита и проводников, и технология всего процесса совсем другая. Но суть в одном: используется принцип, открытый на простейшей системе.

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

Майкл Фарадей (1791-1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать - дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.

В нескольких шагах от дома, в котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет. Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами.

Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви , великого английского физика.

Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал «Историю успехов электромагнетизма» . Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока.

Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода. В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики - он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость. В 1824 году Фарадей сделал несколько открытий в области физики.

Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках». Многие из этих работ могли сами- по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции .

Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки.

Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества. По своему обыкновению Фарадей начал ряд опытов, долженствовавших выяснить суть дела.

На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой - с чувствительным гальванометром. Когда был пропущен ток через первую проволоку,

Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом.

Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение.

Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), - индукция, и новый вид этой энергии - индукционное электричество .

Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились.

Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока. Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа?

Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток.

Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая - вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи - на этот раз: уже под влиянием магнетизма.

Таким образом, здесь впервые магнетизмбыл превращен в электричество. Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда! возбуждался ток в момент намагничивания и размагничивания железа.

Затем Фарадей вносил в проволочную спираль стальной магнит - приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных, токов, действовал совершенно так же, как и гальванический ток.