Утро в гиперболоиде. Подъем на трубу котельной

Однако, пока человечество не научилось избавляться от газообразных отходов предприятий и электростанций, не выбрасывая эти отходы подальше в атмосферу, трубы будут строиться, а возведение этих сооружений останется сложнейшей и интереснейшей инженерной задачей.

Самая высокая дымовая труба в мире была построена в 1987 году в СССР, а находится ныне на территории Казахстана. На высоту 420 м она отводит выбросы Экибастузской ГРЭС-2, вырабатывающей электроэнергию из местного высокозольного угля. Этой трубе немного уступает по высоте канадская Inco Superstack с ее 385 м, возведенная в 1971 году.

В XXI веке ничего подобного уже не строилось — сегодня ставка делается на очистные сооружения, которые серьезно снижают токсичность выбросов. Это, однако, не означает, что трубы утратили свою актуальность — просто появилась возможность строить их ниже, но не так чтобы намного: трубы выше 200 м возводятся и сегодня. Они не столь зрелищны, как небоскребы, но многие инженерные проблемы, которые приходится решать при строительстве сверхвысоких зданий, присутствуют и в работе трубокладов — да-да, именно так называют строителей дымовых труб.

Один из финальных этапов сооружения трубы — ее окраска. Здесь не может быть никаких вольностей: труба — высотный объект и должна быть хорошо заметна для экипажей летательных аппаратов.

Кирпич отступил

Классическим и самым первым материалом для строительства дымовых труб был кирпич. Пока трубы оставались невысокими, все было отлично, но по мере увеличения их высоты выяснилось, что кирпич имеет свои прочностные пределы и недостаточно хорошо работает на сжатие. Впрочем, если подобрать кирпич покрепче и связующие растворы с особыми качествами, то рекорды возможны и в этой области. Еще в 1919 году американской компанией Custodis Chimney в городе Анаконда, штат Монтана, была возведена самая высокая в мире кирпичная труба для отвода газов от множества медеплавильных печей. Труба имеет коническую форму (диаметр 23 м у основания и 18 у вершины) и уходит в небо на 178,3 м. Толщина ее кирпичных стен у основания составляет 180 см.

У этого рекордсмена не было последователей. В грядущие десятилетия самым популярным конструкционным материалом стал железобетон. Железобетонные трубы возводят и поныне, хотя уже существуют альтернативы в виде металла и пластика. Чтобы узнать, что представляют собой современные гигантские дымовые трубы, «ПМ» отправилась в Санкт-Петербург, где расположилась штаб-квартира ЗАО «Корта». Эта компания проектирует и строит высокие дымовые трубы, градирни, а также занимается их ремонтом и обслуживанием в 40 регионах России.


При возведении железобетонной трубы в зимнее время, особенно если речь идет о скользящей опалубке, строительную площадку окружают так называемым тепляком, где плюсовая температура поддерживается с помощью калорифера.

«Видео в интернете, на которых жаждущие адреналина молодые люди прыгают с высоких труб с тарзанок и с парашютами, в нашей профессиональной среде воспринимаются без восторга, — говорит Алина Смирнова, генеральный директор ЗАО «Корта». — Эти сорвиголовы рискуют ради риска, а работа трубоклада сопряжена с риском по необходимости. До сих пор работа на высоте — это тяжелый, по преимуществу ручной труд, где невнимательность и пренебрежение техникой безопасности может стоить жизни». Кубометр бетона, залитый вблизи земли, и кубометр бетона, залитый на высоте 150 м, колоссально отличаются по стоимости — так нам говорят специалисты. Чтобы убедиться в справедливости этого утверждения, стоит разобраться, как устроена и как строится современная железобетонная дымовая труба.

Все ближе к небу

Все, конечно, начинается с фундамента, и тут аналогии с небоскребом напрашиваются сами собой. Подобно ядру высотного здания, дымовая труба — это стержень, консольно защемленный в основании. Как под будущей трубой, так и под будущим небоскребом заливается бетонная плита. Плита может опираться на сваи, а может и не опираться, но в последнем случае придется значительно увеличить ее площадь. Поскольку дымовые трубы строятся, как правило, в стесненных условиях промышленных территорий, сваи обычно используют. Над плитой устанавливается так называемый стакан — круглое основание будущей трубы.


На шахтном подъемнике (решетчатой конструкции) установлена подъемная головка, к которой будет прикреплена рабочая площадка с внешней опалубкой.

Сооружение трубы в чем-то сходно с монолитным строительством зданий — она поэтапно растет вверх. Разница лишь в том, что в распоряжении трубокладов не просторные этажи, а пространство, ограниченное диаметром трубы — всего несколько метров. Существует два основных метода сооружения труб — подъемно-переставной опалубки и скользящей опалубки. Первый метод технологически проще, дешевле, но уступает второму в скорости работ и в качестве железобетонного ствола трубы.

Если трубу возводят методом подъемно-переставной опалубки, то на фундаменте (внутри будущей трубы) устанавливают наращиваемую решетчатую конструкцию — «шахтный подъемник». Он используется для подъема наверх строительных материалов (арматуры, бетона), а также служит опорой для электромеханического подъемного механизма — «подъемной головки». К головке подвешивается круглая площадка, с которой свисает внешняя часть опалубки. Внутренняя (переставная) часть опалубки монтируется дополнительно. Опалубка собрана, закреплена, в ней установлена арматура, туда заливают бетонный раствор. После того как бетон застывает и обретает конструктивную прочность, головка поднимает площадку на 2,5 м. Все повторяется снова. Таким образом труба нарастает кольцами, и каждое из этих колец имеет внутренний выступ, так называемую консоль. Зачем она?


О чем плачут трубы?

Дело в том, что помимо внешнего ствола железобетонной трубы есть еще и внутренняя оболочка, так называемая футеровка. Она выполняется, как правило, из огне- и кислотоупорного кирпича. Футеровка (в отечественных конструкциях) тоже состоит из отдельных колец, каждое из которых опирается на свою консоль. В западных трубах футеровка представляет собой обычно цельный отдельный ствол, который устанавливается внутри основного. Между футеровкой и железобетонным стволом делается теплоизолирующая прослойка из минеральной ваты, а то и просто ничем не заполненной пустоты.

Задача футеровки и теплоизоляции — сберечь железобетонный ствол от действия отводимых газов. Во‑первых, газы бывают очень горячими, на стеклопроизводстве, например, их температура достигает порой 400°. Но более того, отводимые газы обладают еще и агрессивными свойствами. В них чаще всего присутствуют соединения серы. «Если труба спроектирована неправильно или изменены условия ее эксплуатации, — объясняет Алина Смирнова, — то может произойти очень неприятная вещь: прямо в стволе трубы на определенной высоте появится зона «точки росы» и газообразные отходы начнут конденсироваться. Надо понимать, что в присутствии водяного пара, который в трубе есть всегда, соединения серы могут дать серную кислоту, и прямо в трубе пойдет кислотный дождь». Агрессивный конденсат, стекающий по футеровке, представляет большую опасность. При сильном перепаде температуры газов внутри трубы и воздуха снаружи происходит миграция влаги: конденсат проникает внутрь железобетонного ствола и разъедает арматуру и камень.


Сооружение финальной части фундамента под дымовую трубу — так называемого стакана. Сначала монтируется арматура, затем создается бетонная форма.

Иногда он выступает на наружной поверхности трубы в виде белесых пятен, а в зимний период превращается в огромные сосульки. Тогда говорят: труба плачет. Чтобы исключить такие явления, футеровку покрывают специальными составами, снижающими ее проницаемость для конденсата. А вот в трубах, отводящих газы при сжигании угля (в России много угольных разрезов и много ТЭЦ при них), защита футеровки возникает естественным образом: образующийся налет прекрасно защищает кирпич.

Недешевое скольжение

В 1960-е годы в Швеции была разработана более прогрессивная технология строительства железобетонных труб — метод скользящей опалубки. В этом случае рабочая площадка с опалубкой двигается от нулевой отметки, поднимаясь на домкратных стержнях, которые остаются в теле бетона. Высота опалубки 1,2 м, но укладка бетона происходит слоями по 20−30 см. Как только слой обретает конструктивную прочность 5 МПа, укладывается следующий. Метод скользящей опалубки позволяет наращивать строящуюся трубу на 3 м и более в сутки, процесс идет практически непрерывно, и нет необходимости разбирать и собирать опалубку.


«Однако это сложная и дорогая технология, — говорит директор по производству ЗАО «Корта» Андрей Кузнецов. — Оборудование для строительства труб методом скользящей опалубки производят только две фирмы в мире, и его эксплуатация настолько сложна, что нам приходится использовать его только под контролем иностранных супервайзеров, представляющих производителя. Строить же конические сооружения этим методом умеют только австрийцы. Кроме дороговизны, в России метод скользящей опалубки имеет еще два недостатка. Во‑первых, его практически нельзя применять при минусовых температурах (из-за постоянной подачи жидкого раствора, который может замерзнуть), а во-вторых, технология предполагает бесперебойный подвоз раствора в течение, скажем, двух месяцев, и далеко не в каждом регионе нашей страны производственные мощности такое позволяют».

Но какой бы сложной ни была технология опалубки, работа на высоте предъявляет людям высокие требования. Если строящаяся труба не оснащена лифтовым оборудованием (а до определенных высот оно не устанавливается), только забраться на высоту 100−150 м — это приличная затрата времени и сил. Работа на высоте нелегка и психологически — страх высоты заложен в человеке с рождения. Как нам рассказали, некоторые трубоклады, успешно работающие на 120-метровых трубах, отказываются наотрез от работы на 200-метровых. Страшно! Наверху на небольшой площадке нет места для тяжелой техники — для заливки раствора в опалубку рабочие используют тачки и много разного ручного инструмента. Куб бетона, залитый на высоте, «золотым» делает еще и необходимость обеспечивать безопасность трубокладов, а это стоит больших денег. «Экономия на безопасности позволяет некоторым компаниям предлагать низкие цены, — говорит Андрей Кузнецов, — но в итоге это может привести к трагическим последствиям, вроде гибели трех рабочих во время ремонта трубы Конаковской ГРЭС в мае этого года. Люди сорвались вниз вместе с люлькой, которая, очевидно, не прошла положенных испытаний».


Железный аргумент

Впрочем, железобетонным трубам с их трудоемкими технологиями есть альтернатива — металлические конструкции. Металлические трубы бывают отдельно стоящими (в этом случае металла нужно много) или закрепленными в несущем портале, имеющем вид решетчатой фермы. Возведение таких труб технологически проще, они более ремонтопригодны, но менее долговечны.

«Выбор в пользу металлической трубы должен основываться на экономических расчетах, — поясняет Андрей Кузнецов. — Если железобетонная труба наращивается, то металлическую надо собирать из кольцевых элементов с помощью кранов. Краны, способные поднять детали трубы на высоту 150 м, — это уникальные машины, аренда которых может обходиться в миллион рублей в день и выше. Чтобы удешевить процесс, мы сейчас экспериментируем с другой технологией. На всю высоту трубы выстраивается решетчатая легкосборная ферма, а затем внутри нее монтируется труба из металлических колец. Она наращивается либо сверху (тогда секции поднимаются вверх с помощью лебедки), либо снизу (тогда построенная часть трубы поднимается на домкратах). В данном случае тяжелые краны не нужны».

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.


На вопрос Зачем на ТЭЦ большие конусовидные трубы(обычно их несколько)? заданный автором Mitya лучший ответ это Это не трубы! Это- градирни, специальные водоохлаждающие сооружения. В настоящее время градирни применяются в системах оборотного водоснабжения для охлаждения теплообменных аппаратов (как правило, на тепловых электростанциях, ТЭЦ). Процесс охлаждения происходит за счёт испарения части воды при стекании её тонкой плёнкой или каплями по специальному оросителю, вдоль которого в противоположном движению воды направлении подаётся поток воздуха. При испарении 1 % воды, температура оставшейся понижается на 6 °C.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Зачем на ТЭЦ большие конусовидные трубы(обычно их несколько)?

Ответ от Простофиля [гуру]
Чем выше труба, тем больше тяга в котле. Трубы могут быть каждая на свой котел (это хорошо) или из экономии -одна на несколько котлов. А конусовидные, понятно, для прочности!


Ответ от Вровень [эксперт]
Есть градирни а есть и трубы причем очент высокие, а градирни сейчас разрешают экологи и Ростехнадзор заменять на открытые водоемы при наличии специальных очистных сооружений


Ответ от Foxius [гуру]
В замкнутых системах водоснабжения для охлаждения воды, подогретой в конденсаторе, сооружаются устройства, называемые градирнями.
Градирни делятся на испарительные и сухие (радиаторные). В испарительных градирнях вода, стекая по оросителю под действием силы тяжести, вступает в соприкосновение с потоком воздуха. Охлаждение воды происходит в основном за счет ее испарения. Дополнительное охлаждение достигается путем теплопередачи. Вода, поступающая в градирню, стекает на первый из многочисленных слоев насадки. Роль насадки состоит в ускорении рассеивания тепла за счет разбрызгивания воды и увеличения тем самым площади контакта с воздухом.
Испарительные градирни делятся на три типа: открытые; с естественной циркуляцией воздуха; с принудительной циркуляцией воздуха.
Открытые градирни просты по конструкции и надежны в работе. Для притока воздуха в них используется сила ветра. Недостатком является значительная площадь и необходимость установки градирни на открытом пространстве для хорошего продувания ветром.
Испарительные градирни с естественной циркуляцией воздуха значительно сложнее по конструкции и представляют собой гиперболические башни, высота которых достигает 120 м. Перемещение воздуха в них создается за счет разницы в плотностях входящего и выходящего потоков.
В градирнях с принудительной циркуляцией воздушный поток создается с помощью вентиляторов. В сухих, или радиаторных градирнях испарение полностью отсутствует, а для рассеивания теплоты используется эффект теплопередачи. Основное преимущество сухой градирни состоит в том, что в ней практически отсутствуют потери воды.

Сегодня у вас есть возможность мельком глянуть на ТЭЦ изнутри, за которую нужно поблагодарить фотоблоггера Макса Мастерова.

(Всего 14 фото)

Волей случая довелось побывать на одной из московских ТЭЦ. Снимать там, конечно же, нельзя: стратегический объект и т.п., но, как известно, если очень хочется и никто не видит, то можно 🙂

1. Сердце ТеплоЭлектроЦентали - машинный зал. На фото вид на одну из турбин.

2. Слева - красная труба подачи газа. Внизу, в технических подвалах - котлы. Котлы греют воду, обращая ее в пар, который и крутит лопасти турбины. (Котел - большая бочка, через которую проходит много мелких трубок с водой, а снизу их греет огонь)

3. Блок контроля турбины. Слева - ряд манометров (измеряют давление пара в подающих трубах), сверху - техническая галерея. Справа - ввод труб низкого давления (производят отвод отработанного пара от турбины)

4. Заходим к турбине со стороны: справа - турбина высокого давления (крутит лопасти). слева - турбина низкого давления. Для повышения КПД пар, отработанный в первичной турбине (выс. давления) запускается на турбину низк. давления, где проходит еще один рабочий цикл. По центру на фото виден амортизирующий крепеж турбин, защищающий несущие конструкции ТЭЦ от разрушения (т.к. при вращении турбин создаются сильные вибрации)

5. Генератор. Турбины высокого давления, турбины низкого давления и генератор находятся на одной оси (физически). В генераторе внутри неподвижных медных катушек вращаются медные катушки с магнитами (если помнить курс школьной физики, то при вращении магнита внутри катушки в ней возникает ЭДС (электродвижущая сила, то есть электричество). Благодаря этой установке у нас в домах есть свет. Кстати, водород там возникает оттого, что при больших давлениях и температурах водяного пара вода разлагается на составляющие.

6. Общий план машинного зала. Вид на остальные турбины

8. Труба квадратная осуществляет сброс пара до нормального предела. Это автоматическая регулировка давления в подающих трубах. Кстати, два здоровых баллона на тележке это огнетушители

9. Помимо электричества ТЭЦ подает в город горячую воду, которая в виде пара отработала все циклы в турбинах. Эта вода распределяется по теплосетям и нагревает питьевую (из под крана) воду в ЦТП (централизованных тепловых пунктах). На этом фото (белые трубы) показана разводка труб на теплосеть. Вода из теплосети, в свою очередь, не греет наши квартиры, а лишь подогревает холодную воду при помощи теплообменников, установленных в ЦТП. Это сделано для того, чтобы вода из теплосети могла пройти специальную подготовку, которая предотвращает образование накипи на трубах, иначе ремонт отопления , а также промывку теплообменников от накипи пришлось бы делать слишком часто.

10. Извините, что сильно смазано. Спускаемся ниже. Для повышения КПД паровой машины (турбины) пар проходит дополнительный разогрев в перегревателях. Справа - перегреватель. В нем температура пара со 100 градусов возрастает до 170-200 при огромном давлении (около 100 атмосфер).

March 23rd, 2013

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос, так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост z_alexey о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.
Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленной портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.
Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов, оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. Итак по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем то именно таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Оказывается все очень просто. Что бы охладить, оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника техническая вода нагревается и уходит на градирни. Там она стекает тонкой пленкой вниз или падает вниз в виде капель и охлаждается за счет встречного потока воздуха, создаваемого вентиляторами. А в эжекционных градирнях вода распыляется с помощью специальных форсунок. В любом случае основное охлаждение происходит за счет испарения небольшой части воды. С градирен остывшая вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование.
Одним словом, градирни нужны, что бы охлаждать воду, которая охлаждает пар, работающий в системе котел - турбина.

Вся работа ТЭЦ, контролируется из Главного Щита Управления.

Здесь постоянно находится дежурный.

Все события заносятся в журнал.

Меня хлебом не корми, дай сфотографировать кнопочки и датчики...

На этом, почти все. В завершение осталось немного фотографий станции.

Это старая, уже не рабочая труба. Скорее всего скоро ее снесут.

На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.

И их достижениями.

Похоже, что не напрасно...

Осталось добавить, что как в анекдоте - "Я не знаю, кто эти блогеры, но экскурсовод у них директор филиала в Марий Эл и Чувашии ОАО "ТГК-5", КЭС холдинга - Добров С.В."

Вместе с директором станции С.Д. Столяровым.

Без преувеличения - настоящие профессионалы своего дела.

Ну и конечно, огромное спасибо Ирине Романовой, представляющей пресс-службу компании, за прекрасно организованный тур.