Новая мысль. Презентация на тему "ФизикиА. Ф. Иоффе и Р. Э. Милликен. Их жизненный путь. Опыт Иоффе - Милликена"

Ученые прекрасно осознали, что эта частица является фундаментальной составляющей всего материального мира. Соответственно, встал вопрос об изучении и измерении ее свойств. Первое прецизионное измерение электрического заряда электрона — заслуга Роберта Милликена. Его экспериментальная установка представляла собой большой и емкий плоский конденсатор из двух металлических пластин с камерой между ними. На обкладки конденсатора Милликен подавал постоянное напряжение от мощной батареи, создавая на них высокую разность потенциалов, а между обкладками помещал мелко распыленные капли — сначала воды, а затем масла, которое, как выяснилось, ведет себя в электростатическом поле значительно устойчивее, а главное — испаряется гораздо медленнее. Сначала Милликен измерил предельную скорость падения капель — то есть скорость, при которой сила земного притяжения, действующая на капли, уравновешивается силой сопротивления воздуха. По этой скорости ученый определил объем и массу капель аэрозольной взвеси. После этого он распылил идентичный аэрозоль в присутствии электростатического поля, то есть при подключенной батарее. В этом случае масляные капли оставались в подвешенном состоянии достаточно долго, поскольку силы гравитационного притяжения Земли уравновешивались силами электростатического отталкивания между каплями аэрозоля.

Причина, по которой капли масляного аэрозоля электризуются, банальна: это простой электростатический заряд, подобный тому, который накапливается, скажем, на белье, которое мы достаем из сушильной центрифуги, в результате того что ткань трется о ткань — он возникает в результате трения капель о воздух, заполняющий камеру. Однако из-за микроскопического размера масляных капель в камере они не могут получить большого заряда, а величина заряда капель будет кратна единичному заряду электрона. Значит, постепенно понижая внешнее напряжение, мы будем наблюдать, как капли масла периодически «выпадают в осадок», и по градациям шкалы напряжения, при которых осаждается очередная порция аэрозоля, мы можем судить об абсолютной величине единичного заряда, поскольку дробного заряда наэлектризованные капли нести на себе не могут.

Кроме того, Милликен облучал масляную взвесь рентгеновскими лучами и дополнительно ионизировал ее органические молекулы, чтобы повысить их электризацию и продлить время экспериментального наблюдения, одновременно повышая напряжение в камере, и делал так многократно для уточнения полученных данных. Наконец, накопив достаточно экспериментальных данных для статистической обработки, Милликен вычислил величину единичного заряда и опубликовал полученные результаты, которые содержали максимально точно для тех лет рассчитанный заряд электрона.

Опыт Милликена был крайне трудоемок. Ученому приходилось, в частности, постоянно измерять и учитывать влажность воздуха и атмосферное давление — и так на протяжении всех пяти лет непрерывного наблюдения за своей установкой. Наградой за титанический труд стала Нобелевская премия по физике за 1923 год, присужденная Милликену за публикацию 1913 года. Интересно, что при всей кажущейся простоте камеры Милликена она не стала музейным экспонатом. Уже в 1960-е годы, когда появилась гипотеза кварков (см. Стандартная модель), были построены современные, усовершенствованные установки, работающие по вышеописанному принципу, на которых ученые безуспешно искали свободные кварки. Поскольку обнаружить таковые не удалось (кварки различных типов должны иметь электрические заряды, равные 1/3 и 2/3 заряда электрона), это послужило дополнительным подтверждением теории, согласно которой кварки в свободном виде в современной природе не встречаются и всегда находятся в связанном состоянии внутри других элементарных частиц.

Robert Andrews Millikan, 1868-1953

Американский физик. Родился в г. Моррисон, штат Иллинойс, в семье священника-конгрегационалиста и учительницы приходской женской школы. Окончив Оберлинский колледж в Огайо, некоторое время преподавал греческий язык и, по совместительству, физику в начальной школе. Увлекшись последней, поступил на физический факультет Колумбийского университета, после окончания которого прошел годичную практику в ведущих лабораториях Европы, а затем был зачислен в преподавательский штат Чикагского университета. Там он получил всеобщее признание как авторитетный педагог (в частности, долгие годы по его учебникам преподавали физику в американских школах). Там же, в Чикаго, он и проводил на протяжении ряда лет свой знаменитый опыт, позволивший впервые определить с достаточной точностью заряд электрона и выдвинувший Милликена в первые ряды представителей американской науки. В то же время ученый занимался активной общественной деятельностью и, в какой-то мере, способствовал формированию нового облика социально активного интеллектуала в сознании массового читателя.

В годы Первой мировой войны в звании полковника Милликен возглавлял войска связи США. Ученый много времени уделял организации научно-исследовательских учреждений и в 1921 году фактически возглавил только что созданный Калифорнийский технологический институт в Пасадене. При этом Милликен не оставлял и исследовательской деятельности, будучи одним из пионеров физики космических лучей. В итоге он стал олицетворенным символом своего поколения ученых, продолжив традиции англичан Джона Тиндаля и Майкла Фарадея, и предвосхитил появление таких выдающихся ученых-популяризаторов, как Карл Саган.

Существование частиц, имеющих наименьший электрический заряд, доказано многими опытами. Рассмотрим опыты, проведенные советским ученым А. Ф. Иоффе и, независимо от него, американским ученым Р. Милликеном.

Ознакомимся сначала с физическим явлением, которое использовано в этих опытах. Это явление состоит в том, что под действием света (особенно ультрафиолетового 1 ) отрицательный: заряд тела уменьшается. Например, цинковая пластинка, заряженная отрицательно, разряжается под действием ультрафиолетового света (рис. 220).

На рисунке 221 изображена установка, использованная в опыте А. Ф. Иоффе. В закрытом сосуде находились две металлические пластины П, расположенные горизонтально. Из камеры A через отверстие 0 в пространство между пластинами попадали мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.

1. Ультрафиолетовое излучение - это то самое излучение, которое вызывает загар кожи человека; оно имеется не только в солнечном свете, но и в свете специальных электрических ламп.

Положим, что пылинка k заряжена отрицательно. Под действием силы тяжести F T она начнет падать вниз. Но ее падение можно задержать, если нижнюю пластину, зарядить отрицательным зарядом, а верхнюю - положительным. В электрическом поле между пластинами на пылинку станет действовать электрическая сила F эл. Эта сила пропорциональна заряду пылинки: чем больше заряд у пылинки, тем больше будет и сила F эл; действующая на нее. Можно так зарядить пластины, что эта сила уравновесит силу тяжести: F эл = F T . При этих условиях пылинка будет находиться в равновесии сколь угодно долго. Затем отрицательный заряд пылинки уменьшали, действуя на нее ультрафиолетовым светом. Пылинка начинала падать, так как сила F эл, действовавшая на нее, уменьшалась вследствие уменьшения заряда пылинки. Сообщая пластинам дополнительный заряд, и этим усиливая электрическое поле между пластинами, пылинку снова останавливали. Так поступали несколько раз.

Иоффе Абрам Федорович (1880- 1960) - советский физик, академик. Ему принадлежит ряд открытий в области учения о твердом теле, диэлектриках и полупроводниках. А. Ф, Иоффе является одним из крупных организаторов физических исследований в СССР.

Опыты показали, что при этом все изменения заряда пылинки были в целое число раз (т. е. в 2,3, 4, 5 и т. д.) больше начального заряда пылинки. Следовательно, заряд пылинки изменялся определенными порциями. Из этого опыта А. Ф. Иоффе сделал следующий вывод: «При освещении ультрафиолетовым светом пылинка теряет отрицательный заряд не непрерывно, а отдельными порциями. Заряд пылинки всегда выражается целыми кратными значениями элементарного заряда е 0 . Но заряд с пылинки уходит вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый. Эту частицу назвали электроном».

Значение заряда электрона впервые определил Р. Милликен. В своих опытах он пользовался мелкими капельками масла, наблюдая за их движением в электрическом поле.

Масса электрона оказалась равной 9,1 10 -28 г, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Электрический заряд - одно из основных свойств электрона. Нельзя представить, что этот заряд можно «снять» с электрона, он является неотделимым свойством электрона. Электрон - частица с наименьшим отрицательным зарядом.

Упражнение. В описанном опыте нижнюю пластину зарядили отрицательно. Находящаяся ранее в равновесии капля стала двигаться вверх. Как изменился ее заряд? Увеличилось или уменьшилось число электронов на ней?

На рисунке 1 изображена схема установки, использованной в опыте А. Ф. Иоффе. В закрытом сосуде, воздух из которого откачан до высокого вакуума, находились две металлические пластины П , расположенные горизонтально. Из камеры А через отверстие О в пространство между пластинами попала ли мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.

Предположим, что пылинка заряжена отрицательно. Под действием силы тяжести она начинает падать вниз. Но ее падение можно задержать, если нижнюю пластину зарядить отрицательным зарядом, а верхнюю - положительным. В электростатическом поле между пластинами на пылинку станет действовать сила \(~\vec F_{el}\), которая пропорциональна заряду пылинки. Если mg = F el , то пылинка будет находиться в равновесии сколь угодно долго. Затем отрицательный заряд пылинки уменьшали, действуя на нее ультрафиолетовым светом. Пылинка начинала падать, так как сила \(~\vec F_{el}\), действовавшая на нее, уменьшалась. Сообщая пластинам дополнительный заряд и этим усиливая электрическое поле между пластинами, пылинку снова останавливали. Так поступали несколько раз.

Опыты показали, что заряд пылинки изменялся всегда скачкообразно, кратно заряду электрона. Из этого опыта А. Ф. Иоффе сделал следующий вывод: заряд пылинки всегда выражается целыми кратными значениями элементарного заряда е . Меньших "порций" электрического заряда, способных переходить от одного тела к другому, в природе нет. Но заряд пылинки уходит вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже неделимый. Эту частицу назвали электроном .

Значение заряда электрона впервые определил американский физик Р. Милликен. В своих опытах он пользовался мелкими капельками масла, наблюдая за их движением в электростатическом поле (рис. 2). В этих опытах измерялась скорость движения капель масла в однородном электростатическом поле между двумя металлическими пластинками. Капля масла, не имеющая электрического заряда из-за сопротивления воздуха и выталкивающей силы, падает с некоторой постоянной скоростью, так как \(~m \vec g + \vec F_A + \vec F_c = 0\).

Если на своем пути капля встречается с ионом и приобретает электрический заряд q , то на нее, кроме силы тяжести \(~m \vec g\), \(~\vec F_c\) и \(~\vec F_A\), действует со стороны электростатического поля сила \(~\vec F_{el}\). Тогда при установившемся движении \(~m \vec g + \vec F_A + \vec F_c + \vec F_{el} = 0\). Измеряя скорость капли, Милликен смог определить ее заряд.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 210-211.

Опыты Милликена и Иоффе по измерению заряда электрона. Дискретность электрического заряда.

Дата: 1910–1913.

Методы: количественное сравнение непосредственных наблюдений с теорией.

Прямота эксперимента: непосредственное наблюдение + теоретический анализ.

Искусственность изучаемых условий: искусственные условия, при которых применима используемая модель.

Исследуемые фундаментальные принципы: дискретность электрического заряда.



В опыте Роберта Эндрюса Милликена (1858–1953) исследовались микрокапли масла К (см. рис. справа), наэлектризованные трением о воздух, а также захватом ионов воздуха, ионизированного ультрафиолетовым излучением. Если поместить такую каплю в вертикальный сосуд с воздухом, то она начнет падать, и скоро установится ее постоянная скорость падения , соответствующая равновесию силы Архимеда, силы вязкого трения и силы тяжести:

где - плотность, объем и радиус капли соответственно, - коэффициент сопротивления воздуха, выражающийся через его вязкость согласно закону Стокса , - плотность воздуха. Если теперь в сосуде создать направленное вертикально поле с напряженностью , то в левой части уравнения выше появится слагаемое , где - заряд капли. В опыте масло, пройдя через специальную распыляющую камеру Р , направлялось в пространство между двумя металлическими пластинами, разность потенциалов между которыми составляла до нескольких киловольт (см. рис.). Вначале, при отключенном напряжении, капля начинала падать, при этом за ней наблюдали в микроскоп М , фиксируя установившуюся скорость падения. Однако до того, как капля падала на нижнюю пластину, напряжение включали, чтобы электрическое поле поднимало каплю, и вычисляли установившуюся скорость подъема капли вверх. Вовремя включая и отключая поле, каплю много раз заставляли подниматься и спускаться вниз, при этом нетрудно было вычислить ее заряд. Оказалось, что он был различным в различных измерениях, но все время кратным одному и тому же значению элементарного заряда

Это значение заряда связали впоследствии с зарядом электрона. На самом же деле считается, что капля просто захватывала в процессе своего движения положительно или отрицательно заряженные ионы.

Если говорить об особенностях эксперимента Милликена, то можно сказать, что в нем использовался специально очищенный воздух, а камеру, по которой поднималась и опускалась капля, освещали светом электрической дуги. Это с одной стороны делало каплю видимой, а с другой стороны ионизировало воздух, что давало возможность капле захватывать его ионы. Кроме того, как показано на рисунке, распылитель находился над верхней пластиной, в которой, однако, находилось малое отверстие О , через которое лишь отдельные капли попадали в пространство между пластинами, в котором существовало электрическое поле. В опыте Милликена использовались капли размером порядка микрометра.

Похожий эксперимент был проведен Абрамом Федоровичем Иоффе (1890–1960) с разницей всего в пару лет (Иоффе опубликовал свою работу в 1913 г., уже после Милликена, поэтому в литературе обычно ссылаются на последнего). В его опыте электрическим полем уравновешивались не капли масла, а металлические пылинки, которые электризовались при помощи ионизирующего излучения (тут, однако, заряд должен был быть всегда положительным, поскольку пылинка должна была терять электроны в результате поглощения квантов этого излучения). Поскольку плотность металла значительно превышает плотность воздуха, сила Архимеда является несущественной, кроме того, в опыте Иоффе наблюдалось равновесие частиц, а не их равномерное движение, которое обеспечивалось регулировкой напряжения между пластинами.

Особенность опыта Иоффе была в том, что пылинки, вбрасываемые в камеру-конденсатор, не были изначально нейтральными, однако можно было заметить, что под действием ультрафиолетового излучения они теряли отрицательный заряд, что говорило именно о таком знаке заряда электрона. Это не что иное как фотоэффект, открытый и исследованный Столетовым.

В результате опытов Милликена и Иоффе был установлен фундаментальный для физики факт - дискретность электрического заряда - и найдена количественная характеристика дискретности. Тем не менее, в современной теоретической физике существуют объекты, обладающие дробным зарядом. Это кварки, заряды которых по абсолютной величине составляют и элементарного. Однако эти частицы не существуют в свободном виде, а их связанные состояния - адроны - обладают уже целым зарядом (в единицах элементарного). Тем не менее, в опытах по рассеянию высокоэнергетических частиц на адронах были действительно получены значения зарядов кварков внутри них, кратные трети элементарного заряда.

Величина элементарного электрического заряда тесно связана с безразмерной постоянной тонкой структуры , которая определяет силу электромагнитного взаимодействия и известна сегодня с поразительной точностью:

Одно из теоретических объяснений дискретности заряда было предложено в начале XX века Калуцей и Кляйном на основе представления о высших размерностях пространства-времени. Тем не менее, дискретность электрического заряда остается на сегодняшний день принятой, но не объясненной.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Опыт Иоффе и Милликена. Выполнила учитель физики МКОУ « СОШ с. легостаево» Пронькина В.С Делимость электрического заряда.

2 слайд

Описание слайда:

Опыт иоффе и милликена К началу XX в. существование электронов было установлено в целом ряде независимых экспериментов. Но, несмотря на огромный экспериментальный материал, накопленный различными научными школами, электрон оставался, строго говоря, гипотетической частицей. Причина в том, что не было ни одного опыта, в котором участвовали бы одиночные электроны.

3 слайд

Описание слайда:

Опыт иоффе и милликена Для ответа на этот вопрос в 1910-1911 годах американский учёный Роберт Эндрюс Милликен и советский физик Абрам Фёдорович Иоффе независимо друг от друга проделали точные эксперименты, в которых было возможно вести наблюдние за одиночными электронами.

4 слайд

Описание слайда:

5 слайд

Описание слайда:

6 слайд

Описание слайда:

Опыт иоффе и милликена В их опытах в закрытом сосуде 1, воздух из которого откачан насосом до высокого вакуума, находились две горизонтально расположенные металлические пластины 2. Между ними через трубку 3 помещали облако заряженных металлических пылинок или капелек масла. За ними наблюдали в микроскоп 4 со специальной шкалой, позволявший наблюдать за их оседанием (падением) вниз. Предположим, что пылинки или капельки до помещения между пластинами были заряжены отрицательно. Поэтому их оседание (падение) можно остановить, если нижнюю пластину зарядить отрицательно, а верхнюю – положительно. Так и поступали, добиваясь равновесия пылинки (капельки), за которой наблюдали в микроскоп Затем заряд пылинок (капелек) уменьшали, действуя на них ультрафиолетовым или рентгеновским излучением. Пылинки (капельки) начинали падать, так как уменьшалась поддерживающая электрическая сила.

7 слайд

Описание слайда:

опыт иоффе и милликена Сообщая металлическим пластинам дополнительный заряд и этим усиливая электрическое поле, пылинку снова останавливали. Так поступали несколько раз, каждый раз по специальной формуле вычисляя заряд пылинок. Опыты Милликена и Иоффе показали, что заряды капель и пылинок всегда изменяются скачкообразно. Минимальная «порция» электрического заряда – элементарный электрический заряд, равный e = 1,6·10-19 Кл. Однако заряд пылинки уходит не сам по себе, а вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже неделимый - заряд электрона. Благодаря экспериментам Иоффе-Милликена существование электрона превратилось из гипотезы в научно подтверждённый факт.