How to multiply a normal number by a fraction. Multiplication of fractions, division of fractions

In the fifth century BC ancient Greek philosopher Zeno of Elea formulated his famous aporias, the most famous of which is the aporia "Achilles and the tortoise". Here's how it sounds:

Let's say Achilles runs ten times faster than the tortoise and is a thousand paces behind it. During the time during which Achilles runs this distance, the tortoise crawls a hundred steps in the same direction. When Achilles has run a hundred steps, the tortoise will crawl another ten steps, and so on. The process will continue indefinitely, Achilles will never catch up with the tortoise.

This reasoning became a logical shock for all subsequent generations. Aristotle, Diogenes, Kant, Hegel, Gilbert... All of them, in one way or another, considered Zeno's aporias. The shock was so strong that " ... discussions continue at the present time, the scientific community has not yet been able to come to a common opinion about the essence of paradoxes ... mathematical analysis, set theory, new physical and philosophical approaches; none of them became a universally accepted solution to the problem ..."[Wikipedia," Zeno's Aporias "]. Everyone understands that they are being fooled, but no one understands what the deception is.

From the point of view of mathematics, Zeno in his aporia clearly demonstrated the transition from the value to. This transition implies applying instead of constants. As far as I understand, the mathematical apparatus for applying variable units of measurement has either not yet been developed, or it has not been applied to Zeno's aporia. The application of our usual logic leads us into a trap. We, by the inertia of thinking, apply constant units of time to the reciprocal. FROM physical point To the eye, it looks like time slowing down until it stops completely at the moment when Achilles catches up with the tortoise. If time stops, Achilles can no longer overtake the tortoise.

If we turn the logic we are used to, everything falls into place. Achilles runs with constant speed. Each subsequent segment of its path is ten times shorter than the previous one. Accordingly, the time spent on overcoming it is ten times less than the previous one. If we apply the concept of "infinity" in this situation, then it would be correct to say "Achilles will infinitely quickly overtake the tortoise."

How to avoid this logical trap? Remain in constant units of time and do not switch to reciprocal values. In Zeno's language, it looks like this:

In the time it takes Achilles to run a thousand steps, the tortoise crawls a hundred steps in the same direction. During the next time interval, equal to the first, Achilles will run another thousand steps, and the tortoise will crawl one hundred steps. Now Achilles is eight hundred paces ahead of the tortoise.

This approach adequately describes reality without any logical paradoxes. But it is not complete solution Problems. Einstein's statement about the insurmountability of the speed of light is very similar to Zeno's aporia "Achilles and the tortoise". We have yet to study, rethink and solve this problem. And the solution must be sought not in infinitely large numbers, but in units of measurement.

Another interesting aporia of Zeno tells of a flying arrow:

A flying arrow is motionless, since at every moment of time it is at rest, and since it is at rest at every moment of time, it is always at rest.

In this aporia, the logical paradox is overcome very simply - it is enough to clarify that at each moment of time the flying arrow is at rest at different points in space, which, in fact, is movement. There is another point to be noted here. From one photograph of a car on the road, it is impossible to determine either the fact of its movement or the distance to it. To determine the fact of the movement of the car, two photographs taken from the same point at different points in time are needed, but they cannot be used to determine the distance. To determine the distance to the car, you need two photographs taken from different points in space at the same time, but you cannot determine the fact of movement from them (naturally, you still need additional data for calculations, trigonometry will help you). What do I want to focus on Special attention, is that two points in time and two points in space are different things that should not be confused, because they provide different opportunities for exploration.

Wednesday, July 4, 2018

Very well the differences between set and multiset are described in Wikipedia. We look.

As you can see, "the set cannot have two identical elements", but if there are identical elements in the set, such a set is called a "multiset". Reasonable beings will never understand such logic of absurdity. This is the level of talking parrots and trained monkeys, in which the mind is absent from the word "completely." Mathematicians act as ordinary trainers, preaching their absurd ideas to us.

Once upon a time, the engineers who built the bridge were in a boat under the bridge during the tests of the bridge. If the bridge collapsed, the mediocre engineer died under the rubble of his creation. If the bridge could withstand the load, the talented engineer built other bridges.

No matter how mathematicians hide behind the phrase "mind me, I'm in the house", or rather "mathematics studies abstract concepts", there is one umbilical cord that inextricably connects them with reality. This umbilical cord is money. Applicable mathematical theory sets to the mathematicians themselves.

We studied mathematics very well and now we are sitting at the cash desk, paying salaries. Here a mathematician comes to us for his money. We count the entire amount to him and lay it out on our table into different piles, in which we put bills of the same denomination. Then we take one bill from each pile and give the mathematician his "mathematical salary set". We explain the mathematics that he will receive the rest of the bills only when he proves that the set without identical elements is not equal to the set with identical elements. This is where the fun begins.

First of all, the deputies' logic will work: "you can apply it to others, but not to me!" Further, assurances will begin that there are different banknote numbers on banknotes of the same denomination, which means that they cannot be considered identical elements. Well, we count the salary in coins - there are no numbers on the coins. Here the mathematician will begin to convulsively recall physics: different coins available different amount dirt, crystal structure and atomic arrangement of each coin is unique...

And now I have the most interesting question: where is the boundary beyond which elements of a multiset turn into elements of a set and vice versa? Such a line does not exist - everything is decided by shamans, science here is not even close.

Look here. We select football stadiums with the same field area. The area of ​​the fields is the same, which means we have a multiset. But if we consider the names of the same stadiums, we get a lot, because the names are different. As you can see, the same set of elements is both a set and a multiset at the same time. How right? And here the mathematician-shaman-shuller takes out a trump ace from his sleeve and begins to tell us about either a set or a multiset. In any case, he will convince us that he is right.

To understand how modern shamans operate with set theory, tying it to reality, it is enough to answer one question: how do the elements of one set differ from the elements of another set? I will show you, without any "conceivable as not a single whole" or "not conceivable as a single whole."

Sunday, March 18, 2018

The sum of the digits of a number is a dance of shamans with a tambourine, which has nothing to do with mathematics. Yes, in mathematics lessons we are taught to find the sum of the digits of a number and use it, but they are shamans for that, to teach their descendants their skills and wisdom, otherwise shamans will simply die out.

Do you need proof? Open Wikipedia and try to find the "Sum of Digits of a Number" page. She doesn't exist. There is no formula in mathematics by which you can find the sum of the digits of any number. After all, numbers are graphic symbols with which we write numbers, and in the language of mathematics, the task sounds like this: "Find the sum of graphic symbols representing any number." Mathematicians cannot solve this problem, but shamans can do it elementarily.

Let's figure out what and how we do in order to find the sum of the digits of a given number. And so, let's say we have the number 12345. What needs to be done in order to find the sum of the digits of this number? Let's consider all the steps in order.

1. Write down the number on a piece of paper. What have we done? We have converted the number to a number graphic symbol. This is not a mathematical operation.

2. We cut one received picture into several pictures containing separate numbers. Cutting a picture is not a mathematical operation.

3. Convert individual graphic characters to numbers. This is not a mathematical operation.

4. Add up the resulting numbers. Now that's mathematics.

The sum of the digits of the number 12345 is 15. These are the "cutting and sewing courses" from shamans used by mathematicians. But that is not all.

From the point of view of mathematics, it does not matter in which number system we write the number. So, in different systems reckoning, the sum of the digits of the same number will be different. In mathematics, the number system is indicated as a subscript to the right of the number. With a large number of 12345, I don’t want to fool my head, consider the number 26 from the article about. Let's write this number in binary, octal, decimal and hexadecimal number systems. We will not consider each step under a microscope, we have already done that. Let's look at the result.

As you can see, in different number systems, the sum of the digits of the same number is different. This result has nothing to do with mathematics. It's like finding the area of ​​a rectangle in meters and centimeters would give you completely different results.

Zero in all number systems looks the same and has no sum of digits. This is another argument in favor of the fact that . A question for mathematicians: how is it denoted in mathematics that which is not a number? What, for mathematicians, nothing but numbers exists? For shamans, I can allow this, but for scientists, no. Reality is not just about numbers.

The result obtained should be considered as proof that number systems are units of measurement of numbers. Because we can't compare numbers with different units measurements. If the same actions with different units of measurement of the same quantity lead to different results after comparing them, then this has nothing to do with mathematics.

What is real mathematics? This is when the result of a mathematical action does not depend on the value of the number, the unit of measurement used, and on who performs this action.

Sign on the door Opens the door and says:

Ouch! Isn't this the women's restroom?
- Young woman! This is a laboratory for studying the indefinite holiness of souls upon ascension to heaven! Nimbus on top and arrow up. What other toilet?

Female... A halo on top and an arrow down is male.

If you have such a work of design art flashing before your eyes several times a day,

Then it is not surprising that you suddenly find a strange icon in your car:

Personally, I make an effort on myself to see minus four degrees in a pooping person (one picture) (composition of several pictures: minus sign, number four, degrees designation). And I do not consider this girl a fool who does not know physics. She just has an arc stereotype of perception of graphic images. And mathematicians teach us this all the time. Here is an example.

1A is not "minus four degrees" or "one a". This is "pooping man" or the number "twenty-six" in the hexadecimal number system. Those people who constantly work in this number system automatically perceive the number and letter as one graphic symbol.

Multiplication of ordinary fractions

Consider an example.

Let there be $\frac(1)(3)$ part of an apple on the plate. We need to find the $\frac(1)(2)$ part of it. The required part is the result of multiplying the fractions $\frac(1)(3)$ and $\frac(1)(2)$. The result of multiplying two common fractions is a common fraction.

Multiplying two common fractions

Rule for multiplying ordinary fractions:

The result of multiplying a fraction by a fraction is a fraction whose numerator is equal to the product of the numerators of the multiplied fractions, and the denominator is equal to the product of the denominators:

Example 1

Multiply ordinary fractions $\frac(3)(7)$ and $\frac(5)(11)$.

Solution.

Let's use the rule of multiplication of ordinary fractions:

\[\frac(3)(7)\cdot \frac(5)(11)=\frac(3\cdot 5)(7\cdot 11)=\frac(15)(77)\]

Answer:$\frac(15)(77)$

If, as a result of multiplying fractions, a cancellable or not proper fraction, then you need to simplify it.

Example 2

Multiply fractions $\frac(3)(8)$ and $\frac(1)(9)$.

Solution.

We use the rule for multiplying ordinary fractions:

\[\frac(3)(8)\cdot \frac(1)(9)=\frac(3\cdot 1)(8\cdot 9)=\frac(3)(72)\]

As a result, we got a reducible fraction (on the basis of division by $3$. Divide the numerator and denominator of the fraction by $3$, we get:

\[\frac(3)(72)=\frac(3:3)(72:3)=\frac(1)(24)\]

Short solution:

\[\frac(3)(8)\cdot \frac(1)(9)=\frac(3\cdot 1)(8\cdot 9)=\frac(3)(72)=\frac(1) (24)\]

Answer:$\frac(1)(24).$

When multiplying fractions, you can reduce the numerators and denominators to find their product. In this case, the numerator and denominator of the fraction is decomposed into prime factors, after which the repeated factors are reduced and the result is found.

Example 3

Calculate the product of fractions $\frac(6)(75)$ and $\frac(15)(24)$.

Solution.

Let's use the formula for multiplying ordinary fractions:

\[\frac(6)(75)\cdot \frac(15)(24)=\frac(6\cdot 15)(75\cdot 24)\]

Obviously, the numerator and denominator contain numbers that can be reduced in pairs by the numbers $2$, $3$ and $5$. We decompose the numerator and denominator into simple factors and make the reduction:

\[\frac(6\cdot 15)(75\cdot 24)=\frac(2\cdot 3\cdot 3\cdot 5)(3\cdot 5\cdot 5\cdot 2\cdot 2\cdot 2\cdot 3)=\frac(1)(5\cdot 2\cdot 2)=\frac(1)(20)\]

Answer:$\frac(1)(20).$

When multiplying fractions, the commutative law can be applied:

Multiplying a fraction by a natural number

multiplication rule common fraction on the natural number:

The result of multiplying a fraction by a natural number is a fraction in which the numerator is equal to the product of the numerator of the multiplied fraction by the natural number, and the denominator is equal to the denominator of the multiplied fraction:

where $\frac(a)(b)$ is a common fraction, $n$ is a natural number.

Example 4

Multiply the fraction $\frac(3)(17)$ by $4$.

Solution.

Let's use the rule of multiplying an ordinary fraction by a natural number:

\[\frac(3)(17)\cdot 4=\frac(3\cdot 4)(17)=\frac(12)(17)\]

Answer:$\frac(12)(17).$

Do not forget about checking the result of multiplication for the contractibility of a fraction or for an improper fraction.

Example 5

Multiply the fraction $\frac(7)(15)$ by $3$.

Solution.

Let's use the formula for multiplying a fraction by a natural number:

\[\frac(7)(15)\cdot 3=\frac(7\cdot 3)(15)=\frac(21)(15)\]

By the criterion of division by the number $3$), it can be determined that the resulting fraction can be reduced:

\[\frac(21)(15)=\frac(21:3)(15:3)=\frac(7)(5)\]

The result is an improper fraction. Let's take the whole part:

\[\frac(7)(5)=1\frac(2)(5)\]

Short solution:

\[\frac(7)(15)\cdot 3=\frac(7\cdot 3)(15)=\frac(21)(15)=\frac(7)(5)=1\frac(2) (five)\]

It was also possible to reduce fractions by replacing the numbers in the numerator and denominator with their expansions into prime factors. In this case, the solution could be written as follows:

\[\frac(7)(15)\cdot 3=\frac(7\cdot 3)(15)=\frac(7\cdot 3)(3\cdot 5)=\frac(7)(5)= 1\frac(2)(5)\]

Answer:$1\frac(2)(5).$

When multiplying a fraction by a natural number, you can use the commutative law:

Division of ordinary fractions

The division operation is the inverse of multiplication and its result is a fraction by which you need to multiply a known fraction to get a known product of two fractions.

Division of two common fractions

The rule for dividing ordinary fractions: Obviously, the numerator and denominator of the resulting fraction can be decomposed into simple factors and reduce:

\[\frac(8\cdot 35)(15\cdot 12)=\frac(2\cdot 2\cdot 2\cdot 5\cdot 7)(3\cdot 5\cdot 2\cdot 2\cdot 3)= \frac(2\cdot 7)(3\cdot 3)=\frac(14)(9)\]

As a result, we got an improper fraction, from which we select the integer part:

\[\frac(14)(9)=1\frac(5)(9)\]

Answer:$1\frac(5)(9).$

Multiplying a whole number by a fraction is a simple task. But there are subtleties that you probably understood at school, but have since forgotten.

How to multiply an integer by a fraction - a few terms

If you remember what the numerator and denominator are and how a proper fraction differs from an improper one, skip this paragraph. It is for those who have completely forgotten the theory.

The numerator is top part fractions are what we divide. The denominator is the bottom one. This is what we share.
A proper fraction is one whose numerator is less than the denominator. An improper fraction is a fraction whose numerator is greater than or equal to the denominator.

How to multiply a whole number by a fraction

The rule for multiplying an integer by a fraction is very simple - we multiply the numerator by the integer, and do not touch the denominator. For example: two multiplied by one fifth - we get two fifths. Four times three sixteenths is twelve sixteenths.


Reduction

In the second example, the resulting fraction can be reduced.
What does it mean? Note that both the numerator and denominator of this fraction are divisible by four. Divide both numbers by common divisor and is called - reduce the fraction. We get three quarters.


Improper fractions

But suppose we multiply four times two fifths. Got eight fifths. This improper fraction.
It must be brought to correct form. To do this, you need to select a whole part from it.
Here you need to use division with a remainder. We get one and three in the remainder.
One whole and three fifths is our proper fraction.

Correcting thirty-five eighths is a bit more difficult. The closest number to thirty-seven that is divisible by eight is thirty-two. When divided, we get four. We subtract thirty-two from thirty-five - we get three. Outcome: four whole and three eighths.


Equality of the numerator and denominator. And here everything is very simple and beautiful. When the numerator and denominator are equal, the result is just one.

) and the denominator by the denominator (we get the denominator of the product).

Fraction multiplication formula:

For example:

Before proceeding with the multiplication of numerators and denominators, it is necessary to check for the possibility of fraction reduction. If you manage to reduce the fraction, then it will be easier for you to continue to make calculations.

Division of an ordinary fraction by a fraction.

Division of fractions involving a natural number.

It's not as scary as it seems. As in the case of addition, we convert an integer into a fraction with a unit in the denominator. For example:

Multiplication of mixed fractions.

Rules for multiplying fractions (mixed):

  • convert mixed fractions to improper;
  • multiply the numerators and denominators of fractions;
  • we reduce the fraction;
  • if we get an improper fraction, then we convert the improper fraction to a mixed one.

Note! To multiply mixed fraction to another mixed fraction, you first need to bring them to the form of improper fractions, and then multiply according to the multiplication rule for ordinary fractions.

The second way to multiply a fraction by a natural number.

It is more convenient to use the second method of multiplying an ordinary fraction by a number.

Note! To multiply a fraction by a natural number, it is necessary to divide the denominator of the fraction by this number, and leave the numerator unchanged.

From the above example, it is clear that this option is more convenient to use when the denominator of a fraction is divided without a remainder by a natural number.

Multilevel fractions.

In high school, three-story (or more) fractions are often found. Example:

To bring such a fraction to its usual form, division through 2 points is used:

Note! When dividing fractions, the order of division is very important. Be careful, it's easy to get confused here.

Note, for example:

When dividing one by any fraction, the result will be the same fraction, only inverted:

Practical tips for multiplying and dividing fractions:

1. The most important thing in working with fractional expressions is accuracy and attentiveness. Do all calculations carefully and accurately, concentratedly and clearly. It is better to write down a few extra lines in a draft than to get confused in the calculations in your head.

2. In tasks with different types fractions - go to the form of ordinary fractions.

3. We reduce all fractions until it is no longer possible to reduce.

4. Multi-storey fractional expressions we bring into the form of ordinary ones, using division through 2 points.

5. We divide the unit into a fraction in our mind, simply by turning the fraction over.

Lesson content

Adding fractions with the same denominators

Adding fractions is of two types:

  1. Adding fractions with the same denominators
  2. Adding fractions with different denominators

Let's start with adding fractions with the same denominators. Everything is simple here. To add fractions with the same denominators, you need to add their numerators, and leave the denominator unchanged. For example, let's add the fractions and . We add the numerators, and leave the denominator unchanged:

This example can be easily understood if we think of a pizza that is divided into four parts. If you add pizza to pizza, you get pizza:

Example 2 Add fractions and .

The answer is an improper fraction. If the end of the task comes, then it is customary to get rid of improper fractions. To get rid of an improper fraction, you need to select the whole part in it. In our case, the integer part is allocated easily - two divided by two is equal to one:

This example can be easily understood if we think of a pizza that is divided into two parts. If you add more pizzas to the pizza, you get one whole pizza:

Example 3. Add fractions and .

Again, add the numerators, and leave the denominator unchanged:

This example can be easily understood if we think of a pizza that is divided into three parts. If you add more pizzas to pizza, you get pizzas:

Example 4 Find the value of an expression

This example is solved in exactly the same way as the previous ones. The numerators must be added and the denominator left unchanged:

Let's try to depict our solution using a picture. If you add pizzas to a pizza and add more pizzas, you get 1 whole pizza and more pizzas.

As you can see, adding fractions with the same denominators is not difficult. It is enough to understand the following rules:

  1. To add fractions with the same denominator, you need to add their numerators, and leave the denominator unchanged;

Adding fractions with different denominators

Now we will learn how to add fractions with different denominators. When adding fractions, the denominators of those fractions must be the same. But they are not always the same.

For example, fractions can be added because they have the same denominators.

But fractions cannot be added immediately, because these fractions have different denominators. In such cases, fractions must be reduced to the same (common) denominator.

There are several ways to reduce fractions to the same denominator. Today we will consider only one of them, since the rest of the methods may seem complicated for a beginner.

The essence of this method lies in the fact that first (LCM) of the denominators of both fractions is sought. Then the LCM is divided by the denominator of the first fraction and the first additional factor is obtained. They do the same with the second fraction - the LCM is divided by the denominator of the second fraction and the second additional factor is obtained.

Then the numerators and denominators of the fractions are multiplied by their additional factors. As a result of these actions, fractions that had different denominators turn into fractions that have the same denominators. And we already know how to add such fractions.

Example 1. Add fractions and

First of all, we find the least common multiple of the denominators of both fractions. The denominator of the first fraction is the number 3, and the denominator of the second fraction is the number 2. The least common multiple of these numbers is 6

LCM (2 and 3) = 6

Now back to fractions and . First, we divide the LCM by the denominator of the first fraction and get the first additional factor. LCM is the number 6, and the denominator of the first fraction is the number 3. Divide 6 by 3, we get 2.

The resulting number 2 is the first additional factor. We write it down to the first fraction. To do this, we make a small oblique line above the fraction and write down the found additional factor above it:

We do the same with the second fraction. We divide the LCM by the denominator of the second fraction and get the second additional factor. LCM is the number 6, and the denominator of the second fraction is the number 2. Divide 6 by 2, we get 3.

The resulting number 3 is the second additional factor. We write it to the second fraction. Again, we make a small oblique line above the second fraction and write the found additional factor above it:

Now we are all set to add. It remains to multiply the numerators and denominators of fractions by their additional factors:

Look closely at what we have come to. We came to the conclusion that fractions that had different denominators turned into fractions that had the same denominators. And we already know how to add such fractions. Let's complete this example to the end:

Thus the example ends. To add it turns out.

Let's try to depict our solution using a picture. If you add pizzas to a pizza, you get one whole pizza and another sixth of a pizza:

Reduction of fractions to the same (common) denominator can also be depicted using a picture. Bringing the fractions and to a common denominator, we get the fractions and . These two fractions will be represented by the same slices of pizzas. The only difference will be that this time they will be divided into equal shares (reduced to the same denominator).

The first drawing shows a fraction (four pieces out of six) and the second picture shows a fraction (three pieces out of six). Putting these pieces together we get (seven pieces out of six). This fraction is incorrect, so we have highlighted the integer part in it. The result was (one whole pizza and another sixth pizza).

Note that we have painted given example too detailed. IN educational institutions it is not customary to write in such a detailed manner. You need to be able to quickly find the LCM of both denominators and additional factors to them, as well as quickly multiply the additional factors found by your numerators and denominators. While at school, we would have to write this example as follows:

But there is also back side medals. If detailed notes are not made at the first stages of studying mathematics, then questions of the kind “Where does that number come from?”, “Why do fractions suddenly turn into completely different fractions? «.

To make it easier to add fractions with different denominators, you can use the following step-by-step instructions:

  1. Find the LCM of the denominators of fractions;
  2. Divide the LCM by the denominator of each fraction and get an additional multiplier for each fraction;
  3. Multiply the numerators and denominators of fractions by their additional factors;
  4. Add fractions that have the same denominators;
  5. If the answer turned out to be an improper fraction, then select its whole part;

Example 2 Find the value of an expression .

Let's use the instructions above.

Step 1. Find the LCM of the denominators of fractions

Find the LCM of the denominators of both fractions. The denominators of the fractions are the numbers 2, 3 and 4

Step 2. Divide the LCM by the denominator of each fraction and get an additional multiplier for each fraction

Divide the LCM by the denominator of the first fraction. LCM is the number 12, and the denominator of the first fraction is the number 2. Divide 12 by 2, we get 6. We got the first additional factor 6. We write it over the first fraction:

Now we divide the LCM by the denominator of the second fraction. LCM is the number 12, and the denominator of the second fraction is the number 3. Divide 12 by 3, we get 4. We got the second additional factor 4. We write it over the second fraction:

Now we divide the LCM by the denominator of the third fraction. LCM is the number 12, and the denominator of the third fraction is the number 4. Divide 12 by 4, we get 3. We got the third additional factor 3. We write it over the third fraction:

Step 3. Multiply the numerators and denominators of fractions by your additional factors

We multiply the numerators and denominators by our additional factors:

Step 4. Add fractions that have the same denominators

We came to the conclusion that fractions that had different denominators turned into fractions that have the same (common) denominators. It remains to add these fractions. Add up:

The addition didn't fit on one line, so we moved the remaining expression to the next line. This is allowed in mathematics. When an expression does not fit on one line, it is carried over to the next line, and it is necessary to put an equal sign (=) at the end of the first line and at the beginning of a new line. The equal sign on the second line indicates that this is a continuation of the expression that was on the first line.

Step 5. If the answer turned out to be an improper fraction, then select the whole part in it

Our answer is an improper fraction. We must single out the whole part of it. We highlight:

Got an answer

Subtraction of fractions with the same denominators

There are two types of fraction subtraction:

  1. Subtraction of fractions with the same denominators
  2. Subtraction of fractions with different denominators

First, let's learn how to subtract fractions with the same denominators. Everything is simple here. To subtract another from one fraction, you need to subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator the same.

For example, let's find the value of the expression . To solve this example, it is necessary to subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator unchanged. Let's do this:

This example can be easily understood if we think of a pizza that is divided into four parts. If you cut pizzas from a pizza, you get pizzas:

Example 2 Find the value of the expression .

Again, from the numerator of the first fraction, subtract the numerator of the second fraction, and leave the denominator unchanged:

This example can be easily understood if we think of a pizza that is divided into three parts. If you cut pizzas from a pizza, you get pizzas:

Example 3 Find the value of an expression

This example is solved in exactly the same way as the previous ones. From the numerator of the first fraction, you need to subtract the numerators of the remaining fractions:

As you can see, there is nothing complicated in subtracting fractions with the same denominators. It is enough to understand the following rules:

  1. To subtract another from one fraction, you need to subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator unchanged;
  2. If the answer turned out to be an improper fraction, then you need to select the whole part in it.

Subtraction of fractions with different denominators

For example, a fraction can be subtracted from a fraction, since these fractions have the same denominators. But a fraction cannot be subtracted from a fraction, because these fractions have different denominators. In such cases, fractions must be reduced to the same (common) denominator.

The common denominator is found according to the same principle that we used when adding fractions with different denominators. First of all, find the LCM of the denominators of both fractions. Then the LCM is divided by the denominator of the first fraction and the first additional factor is obtained, which is written over the first fraction. Similarly, the LCM is divided by the denominator of the second fraction and a second additional factor is obtained, which is written over the second fraction.

The fractions are then multiplied by their additional factors. As a result of these operations, fractions that had different denominators turn into fractions that have the same denominators. And we already know how to subtract such fractions.

Example 1 Find the value of an expression:

These fractions have different denominators, so you need to bring them to the same (common) denominator.

First, we find the LCM of the denominators of both fractions. The denominator of the first fraction is the number 3, and the denominator of the second fraction is the number 4. The least common multiple of these numbers is 12

LCM (3 and 4) = 12

Now back to fractions and

Let's find an additional factor for the first fraction. To do this, we divide the LCM by the denominator of the first fraction. LCM is the number 12, and the denominator of the first fraction is the number 3. Divide 12 by 3, we get 4. We write the four over the first fraction:

We do the same with the second fraction. We divide the LCM by the denominator of the second fraction. LCM is the number 12, and the denominator of the second fraction is the number 4. Divide 12 by 4, we get 3. Write a triple over the second fraction:

Now we are all set for subtraction. It remains to multiply the fractions by their additional factors:

We came to the conclusion that fractions that had different denominators turned into fractions that had the same denominators. And we already know how to subtract such fractions. Let's complete this example to the end:

Got an answer

Let's try to depict our solution using a picture. If you cut pizzas from a pizza, you get pizzas.

This is the detailed version of the solution. Being at school, we would have to solve this example in a shorter way. Such a solution would look like this:

Reduction of fractions and to a common denominator can also be depicted using a picture. Bringing these fractions to a common denominator, we get the fractions and . These fractions will be represented by the same pizza slices, but this time they will be divided into the same fractions (reduced to the same denominator):

The first drawing shows a fraction (eight pieces out of twelve), and the second picture shows a fraction (three pieces out of twelve). By cutting off three pieces from eight pieces, we get five pieces out of twelve. The fraction describes these five pieces.

Example 2 Find the value of an expression

These fractions have different denominators, so you first need to bring them to the same (common) denominator.

Find the LCM of the denominators of these fractions.

The denominators of the fractions are the numbers 10, 3 and 5. The least common multiple of these numbers is 30

LCM(10, 3, 5) = 30

Now we find additional factors for each fraction. To do this, we divide the LCM by the denominator of each fraction.

Let's find an additional factor for the first fraction. LCM is the number 30, and the denominator of the first fraction is the number 10. Divide 30 by 10, we get the first additional factor 3. We write it over the first fraction:

Now we find an additional factor for the second fraction. Divide the LCM by the denominator of the second fraction. LCM is the number 30, and the denominator of the second fraction is the number 3. Divide 30 by 3, we get the second additional factor 10. We write it over the second fraction:

Now we find an additional factor for the third fraction. Divide the LCM by the denominator of the third fraction. LCM is the number 30, and the denominator of the third fraction is the number 5. Divide 30 by 5, we get the third additional factor 6. We write it over the third fraction:

Now everything is ready for subtraction. It remains to multiply the fractions by their additional factors:

We came to the conclusion that fractions that had different denominators turned into fractions that have the same (common) denominators. And we already know how to subtract such fractions. Let's finish this example.

The continuation of the example will not fit on one line, so we move the continuation to the next line. Don't forget about the equal sign (=) on the new line:

The answer turned out to be a correct fraction, and everything seems to suit us, but it is too cumbersome and ugly. We should make it easier. What can be done? You can reduce this fraction.

To reduce a fraction, you need to divide its numerator and denominator by (gcd) the numbers 20 and 30.

So, we find the GCD of the numbers 20 and 30:

Now we return to our example and divide the numerator and denominator of the fraction by the found GCD, that is, by 10

Got an answer

Multiplying a fraction by a number

To multiply a fraction by a number, you need to multiply the numerator of the given fraction by this number, and leave the denominator the same.

Example 1. Multiply the fraction by the number 1.

Multiply the numerator of the fraction by the number 1

The entry can be understood as taking half 1 time. For example, if you take pizza 1 time, you get pizza

From the laws of multiplication, we know that if the multiplicand and the multiplier are interchanged, then the product will not change. If the expression is written as , then the product will still be equal to . Again, the rule for multiplying an integer and a fraction works:

This entry can be understood as taking half of the unit. For example, if there is 1 whole pizza and we take half of it, then we will have pizza:

Example 2. Find the value of an expression

Multiply the numerator of the fraction by 4

The answer is an improper fraction. Let's take a whole part of it:

The expression can be understood as taking two quarters 4 times. For example, if you take pizzas 4 times, you get two whole pizzas.

And if we swap the multiplicand and the multiplier in places, we get the expression. It will also be equal to 2. This expression can be understood as taking two pizzas from four whole pizzas:

Multiplication of fractions

To multiply fractions, you need to multiply their numerators and denominators. If the answer is an improper fraction, you need to select the whole part in it.

Example 1 Find the value of the expression .

Got an answer. It is desirable to reduce this fraction. The fraction can be reduced by 2. Then the final solution will take the following form:

The expression can be understood as taking a pizza from half a pizza. Let's say we have half a pizza:

How to take two-thirds from this half? First you need to divide this half into three equal parts:

And take two from these three pieces:

We'll get pizza. Remember what a pizza looks like divided into three parts:

One slice from this pizza and the two slices we took will have the same dimensions:

In other words, we are talking about the same pizza size. Therefore, the value of the expression is

Example 2. Find the value of an expression

Multiply the numerator of the first fraction by the numerator of the second fraction, and the denominator of the first fraction by the denominator of the second fraction:

The answer is an improper fraction. Let's take a whole part of it:

Example 3 Find the value of an expression

Multiply the numerator of the first fraction by the numerator of the second fraction, and the denominator of the first fraction by the denominator of the second fraction:

The answer turned out to be a correct fraction, but it will be good if it is reduced. To reduce this fraction, you need to divide the numerator and denominator of this fraction by the greatest common divisor (GCD) of the numbers 105 and 450.

So, let's find the GCD of the numbers 105 and 450:

Now we divide the numerator and denominator of our answer to the GCD that we have now found, that is, by 15

Representing an integer as a fraction

Any whole number can be represented as a fraction. For example, the number 5 can be represented as . From this, five will not change its meaning, since the expression means “the number five divided by one”, and this, as you know, is equal to five:

Reverse numbers

Now we will get acquainted with interesting topic in mathematics. It's called "reverse numbers".

Definition. Reverse to numbera is the number that, when multiplied bya gives a unit.

Let's substitute in this definition instead of a variable a number 5 and try to read the definition:

Reverse to number 5 is the number that, when multiplied by 5 gives a unit.

Is it possible to find a number that, when multiplied by 5, gives one? It turns out you can. Let's represent five as a fraction:

Then multiply this fraction by itself, just swap the numerator and denominator. In other words, let's multiply the fraction by itself, only inverted:

What will be the result of this? If we continue to solve this example, we get one:

This means that the inverse of the number 5 is the number, since when 5 is multiplied by one, one is obtained.

The reciprocal can also be found for any other integer.

You can also find the reciprocal for any other fraction. To do this, it is enough to turn it over.

Division of a fraction by a number

Let's say we have half a pizza:

Let's divide it equally between two. How many pizzas will each get?

It can be seen that after splitting half of the pizza, two equal pieces were obtained, each of which makes up a pizza. So everyone gets a pizza.

Division of fractions is done using reciprocals. Reverse numbers allow you to replace division with multiplication.

To divide a fraction by a number, you need to multiply this fraction by the reciprocal of the divisor.

Using this rule, we will write down the division of our half of the pizza into two parts.

So, you need to divide the fraction by the number 2. Here the dividend is a fraction and the divisor is 2.

To divide a fraction by the number 2, you need to multiply this fraction by the reciprocal of the divisor 2. The reciprocal of the divisor 2 is a fraction. So you need to multiply by